Accepted Manuscript

The use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges

Lalit K. Pandey, Elizabeth A. Bergey, Lyu Jie, Jihae Park, Soyeon Choi, Hojun Lee, Stephen Depuydt, Taejun Han

PII: S0043-1354(17)30069-6

DOI: 10.1016/j.watres.2017.01.062

Reference: WR 12663

To appear in: Water Research

Received Date: 25 September 2016

Revised Date: 28 January 2017

Accepted Date: 30 January 2017

Please cite this article as: Pandey, L.K., Bergey, E.A., Jie, L., Park, J., Choi, S., Lee, H., Depuydt, S., Han, T., The use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges, *Water Research* (2017), doi: 10.1016/j.watres.2017.01.062.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- The use of diatoms in ecotoxicology and bioassessment: insights, advances and 1
- 2 challenges
- Lalit K. Pandey^{1,2}, Elizabeth A. Bergey³, Lyu Jie⁴, Jihae Park^{4,5}, Soyeon Choi⁴, Hojun Lee², Stephen Depuydt⁵, Taejun Han^{2,6*} 3
- 4
- 5
- 1) Institute of Green Environmental Research Center, 169, Gaetbeol-ro, Yeonsu-gu, 6 7 Incheon 21999, Korea.
- 8 2) Department of Marine Sciences, Incheon National University, 119, Academy-ro,
- 9 Yeonsu-gu, Incheon 22012, Korea.
- 10 3) Oklahoma Biological Survey and Department of Biology, University of Oklahoma,
- 11 Norman, OK 73019, USA.
- 4) Division of Life Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, 12 13 Incheon 22012, Korea.
- 14 5) Department of Plant Biotechnology and Bioinformatics, Ghent University Global
- 15 Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, Korea
- 16 6) Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon
- 21985, Korea. 17
- *Corresponding author at: Department of Marine Science, Incheon National University, 18
- 19 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea. E-mail address:
- 20 hanalgae@hanmail.net (T. Han).
- 21 Abstract
- 22 Diatoms are regularly used for bioassessment and ecotoxicological studies in relation to
- 23 environmental and anthropogenic disturbances. Traditional taxonomical diatom
- 24 parameters (cell counts, biovolume estimates, species richness, diversity indices and
- 25 metrics using sensitive and tolerant diatom species) are regularly used for these studies.
- 26 In the same context, very less focus was given on new endpoints of diatoms (life-forms,
- 27 nuclear anomalies, alteration in photosynthetic apparatus shape, motility, lipid bodies,
- 28 size reduction and deformities), in spite of their numerous merits, such as, their easiness,
- 29 quickness, cheapness, global acceptation and no especial training in diatom taxonomy. In
- 30 this review we analyzed 205 articles (from lab and field studies), with the aim to
- 31 investigate the bioassessment and ecotoxicological advancement taken place in diatom
- 32 research especially in terms of exploring new endpoints along with the traditional
- 33 taxonomical parameters in a perspective which can greatly enhance the evaluation of
- 34 fluvial ecosystem quality for biomonitoring practices.

Keywords- Biomonitoring; Ecotoxicology; Nuclear anomalies; Lipid bodies; Size
 reduction; Deformities

37 **1. Introduction**

38 Globally, diatoms are used to assess the ecological status of aquatic systems because 39 diatoms have a cosmopolitan nature, short life span and quick response to environmental 40 and anthropogenic disturbances (Stevenson et al., 2010). Such use of diatoms is 41 meaningful, given that diatoms are the chief primary producers in waterbodies, 42 contributing 40 % of the primary productivity of the oceans and contributing 43 approximately 20 % of global carbon fixation (Hildebrand, 2008). Various organisms 44 (macroinvertebrates, fishes, macrophytes and algae, including diatoms) have been used 45 for biomonitoring around the world, but among these organisms, diatoms are the most 46 suitable for assessing the chemical status of waterbodies (McCormick and Cairns, 1994; 47 Stevenson et al., 2010). For example, Hering et al. (2006) found that diatoms were 48 sensitive to nutrient and organic matter contamination, whereas fishes, 49 macroinvertebrates and macrophytes were more sensitive to hydrological changes in 50 aquatic ecosystems. Indeed, the high sensitivity of diatoms to organic toxicants (atrazine, 51 metolachlor, simazine, phenols and PAHs) (Blanco and Bécares, 2010), organic matter 52 (especially nutrients, nitrate and phosphate) (Stevenson et al., 2010; Stevenson, 2014; 53 Morin et al., 2016) and inorganic contamination (heavy metals) (Hirst et al., 2002; De 54 Jonge et al., 2008; Morin et al., 2012) has been reported from different parts of the world. 55 A major advantage of using diatoms in environmental studies, including ecotoxicology, is 56 that diatom assemblages are specious and can be used to investigate the effects of toxicants at different levels of ecological organization (community, population, and 57

58 individual levels) (McCormick and Cairns, 1994; Debenest et al., 2013; Stevenson, 2014). 59 Because of these characteristics, a variety of national and international agencies have 60 recommended diatoms as a biomonitoring tool for assessing the ecological status of rivers 61 and streams (Kelly et al., 1998; Stevenson et al., 2010). 62 Diatoms are characterized by their robust, ornamented, species-specific siliceous frustules, which are preserved and dependably replicated in successive generations 63 64 (Falasco et al., 2009). Species identification is based on these siliceous frustules. Even in 65 fossilized form, diatom frustules are a useful tool to assess the paleoclimatic conditions (Mackay, 2007). Although used for biomonitoring worldwide, few studies have related 66 67 diatom diversity in Polar Regions to global climate change (Anderson, 2000; Bopp et al., 68 2005; Alvain et al., 2013). In spite of their diversity, beauty, ecological importance and biomonitoring 69 70 potential, diatoms are globally underutilized as a tool for risk assessment and for 71 evaluating management options for fluvial ecosystems (Stevenson et al., 2010). The main 72 reason behind this underutilization is the limited types of metrics traditionally used in 73 bioassessment. Traditional metrics for diatoms include biovolume, cell density and 74 relative abundance (with special reference to indicator species), whereas the newer behavioral, physiological and functional metrics are rarely used. These newer metrics 75 76 have advantages in understanding the dynamics of biological communities (Giddings et 77 al., 2002), especially because these metrics demonstrate sublethal effects that are not 78 apparent in diatom counts (the basis of traditional metrics). 79 Community structural metrics are useful for predicting possible adverse effects of

80 chemicals at the population and community level, thus they are directly linked to

biodiversity. According Knauer and Hommen (2012), two common metrics - species

81

82 richness and Shannon-Wiener index (H') - showed low bioassessment value for 83 community structure, whereas total abundance and the abundance of the dominant 84 species demonstrated high sensitivity. High diatom community variability is an inherent characteristic of complex test 85 86 systems, such as in experimental micro- and mesocosm studies, and consequently, this 87 variability complicates interpretation of studies (Campbell et al., 1999). Therefore, 88 evaluation of test systems is preferably not based on biodiversity metrics alone, but is 89 complemented by other parameters (e.g., functional metrics) that are quick, easy and can 90 be used globally. Functional metrics are pertinent because they are closely linked to some 91 regulatory and supporting ecosystem services, and may be less variable among replicates. 92 Furthermore, even if the structural integrity of the community is altered, some functional 93 parameters (such as primary productivity and nutrient cycling) may be unaffected and 94 vice versa. Combining information from both structural and functional metrics enhances 95 the sensitivity and predictive power of studies aimed at bioassessment and risk 96 assessment. Indeed, the use of both structural and functional parameters provides 97 sensitive and powerful early warning tools for evaluating sub-lethal effects of exposure to 98 toxins (Renzi et al., 2014). However, structural metrics (cell counts and biovolume, 99 species composition and abundance) had high variation due to variation among replicates, 100 which resulted in statistically weak relationships with the studied stressors (Kraufvelin, 101 1998; Knauer et al., 2005). Varying division rates of individual diatom species (which is 102 often related to their size; Lavoie et al., 2006) is a prime reason for high variation among 103 test replicates, in part because accurate quantification of diatom frustules is still a major

104	constrain for ecotoxicological studies. Thus, there is an urgent need to develop or
105	incorporate more sensitive metrics for assessing early exposure to stress, specifically
106	metrics that measure physiological or morphological changes in diatom species, making
107	functional metrics a priority for further research (Renzi et al., 2014).
108	For bioassessment and ecotoxicological practices several new diatom parameters
109	have been reported in the last decade; parameters that are very promising but sporadically
110	used or reported. These parameters are nuclear anomalies (Debenest et al., 2008; Licursi
111	and Gómez, 2013), alteration in the cell membrane, cytoplasmic content and
112	photosynthetic apparatus (Chang et al., 2011; Armbrecht et al., 2014; Wood et al., 2014),
113	changes in lipid body formation (Pandey et al., 2015) and the classification of diatoms
114	using various life-forms and ecological guilds (Passy et al., 2007; Rimet and Bouchez,
115	2011). Relationships among these unconventional parameters have been found in some
116	studies. For example, diatom motility was associated with the size/number of lipid bodies
117	(Wang et al., 2013), size reduction can be associated with frustule deformity (Hasle and
118	Syvertsen, 1996), lipid bodies metrics and frustule deformities may vary with
119	cytoplasmic anomalies (Renzi et al., 2014) and frustule deformity is associated with lipid
120	body characteristics (Pandey et al., 2015). This correlation among unconventional metrics
121	demonstrates shared sensitivity and indicates their efficiency in measuring responses to
122	toxicants, especially early effects and cellular responses to high toxicant doses. These
123	metrics may allow early detection of stress after exposure to doses below those needed to
124	cause cell death, which is the endpoint detected by traditional methods (Renzi et al.,
125	2014). In addition, these unconventional parameters are also reported to be effective for
126	bioassessment practices. For example, Gillet et al. (2009, 2011) reported percent live

127	diatoms in the biofilm to be a cost-effective bioassessment tool. Similarly, Morin et al.
128	(2016) advocated the use of impaired cytoplasmic content in live diatoms for the
129	bioassessment of fresh waterbodies. Furthermore, various life-forms and ecological
130	guilds of diatoms are regularly investigated for assessing the ecological health of
131	waterbodies (Medley and Clements, 1998; Passy, 2007; B-Béres et al., 2014). These
132	newer metrics are quick, easy, require less human expertise, have good reproducibility,
133	have standard protocols and, most importantly, can be adopted world-wide. However, the
134	use of these metrics for ecotoxicological and bioassessment testing needs further study
135	and demonstration in order to better determine concentration-dependent and/or time-
136	dependent responses and to gain wider acceptance (Dickman, 1998; Renzi et al., 2014).
137	The use of molecular approaches (next-generation sequencing, DNA barcode,
138	DNA fingerprinting) in diatom-based biomonitoring practices has recently received
139	significant attention (Kermarrec et al., 2013; Kermarrec et al., 2014; Manoylov, 2014;
140	Visco et al., 2015). Developments of next-generation sequencing technologies offer the
141	possibility to use molecular barcoding for fast and reliable biodiversity surveys based on
142	environmental samples. Next-generation sequencing approaches have tremendous
143	potential for diatom-based monitoring, such as ease in species identification, comparison
144	of species inventories, real-time assessment of living communities and reduction in
145	sample processing time (Visco et al., 2015). Similarly, DNA fingerprinting may be used
146	to measure the genetic diversity in populations of diatoms (e.g., Ditylum brightwellii) and
147	may also help understand the relationship between diatom blooms and environmental
148	conditions (Rynearson and Armbrust, 2000). Molecular bioassessment of diatoms is a
149	promising field but at this point, we cannot yet adopt them for many reasons. The identity

150	of most taxa in genetic reference libraries has not been rigorously evaluated, so reference
151	library based taxonomy may not be accurate (Manoylov, 2014). Lastly, the high cost of
152	reagents per megabase sequencing output and the reading of homopolymer regions are
153	additional issues with molecular bioassessment that need to be addressed (Claesson et al.
154	2010). As a consequence, the number of field-collected samples analyzed for
155	bioassessment with molecular tools has been limited (Kermarrec et al. 2013).
156	Incorporating the new metrics along with the traditionally used metrics will make
157	diatom ecotoxicological and bioassessment practices easier and more rapid, reproducible,
158	cheap and globally accepted. Thus, in this review, we explore the present status of
159	various structural and functional metrics of diatoms used in ecotoxicology and
160	bioassessment studies and discuss their merits and demerits in order to raise the profile of
161	diatoms as an effective tool for biomonitoring practices.
162	2. Traditional endpoints
163	2.1. Diatom diversity and abundances
164	Analysis of available literature does not support a direct cause-effect relationship

between chemical pollution and diatom diversity. In general, the relationship between 165 diversity and chemical contamination is not always a simple linear positive/negative 166 167 association and results are not always strong enough to indicate a management approach 168 that would most effectively conserve the health of the ecosystem (Ricciardi et al., 2009). 169 Thus, a careful analysis of how loss of diversity may be linked to chemical contamination 170 would be useful in refining risk-assessment procedures. Effects of contaminants on 171 diatom communities have been frequently evaluated using various diversity indices, such as species richness, Shannon index, evenness, and Jaccard similarity index. For example, 172

173	Gold et al. (2002) used a translocation experiment and reported lower cell density,
174	species richness and Shannon index of the periphytic diatom community at the severely
175	polluted sites. Similarly, Verb and Vis (2005) reported lower diversity (in terms of
176	species richness and Shannon index) of periphytic diatoms at the acid mine drainage
177	(AMD) impacted sites in the USA. Recently, Morin et al. (2015) found significantly
178	higher values for various diversity indices for periphytic diatoms (species richness and
179	Shannon index) from the control sites (Firmi and Moulin) than from contaminated sites
180	(Joanis and Usine for metals and Decazeville for high nutrient loads) of the Riou-Mort
181	River, South West France. Similarly, Luís et al. (2011) reported lower Shannon index
182	values of periphytic diatom communities examined at acid mine drainage sites in
183	Portugal. Moreover, reproduction of diatom species may be inhibited under stress,
184	resulting in decreases in species richness and diversity, as has often been reported at
185	metal polluted sites (Deniseger et al., 1986; Genter and Lehman, 2000).
186	These biodiversity parameters are regularly used but sometimes do not provide
187	consistent information about the known impairment of waterbodies (Blanco et al., 2012).
188	For example, Hirst et al. (2002) showed that species richness, evenness and diversity
189	were not significantly related to the chemical characteristics of stream water polluted by
190	mining activities in United Kingdom. In the same context, De Jonge et al. (2008)
191	reported statistically insignificant correlations between periphytic diatom community
192	parameters (diversity, evenness and different indices) and the heavy metal load of water
193	and sediment in a lowland river in Flanders, Belgium. Similarly, Duong et al. (2008)
194	found no difference in the diversity indices of periphytic diatom communities examined
195	at the reference (Firmi) sites and contaminated (Joanis) sites of the Riou-Mort River,

196	South West France. Duong et al. (2010) also found no significant difference in terms of
197	species richness (S) and diversity (H') between the control periphytic diatom community
198	and that contaminated with 100 μ g L ⁻¹ Cd after one week of colonisation. However,
199	significantly higher metric values were recorded in the control community than in the
200	contaminated community at the fourth and sixth week of the experiment.
201	Other studies showed mixed responses of diatoms against different types of
202	stresses. For example, Medley and Clements (1998) reported significantly lower species
203	diversity ($p < 0.05$) but the relation was insignificant in terms of cell density, species
204	richness and abundance of dominant taxa at the Zn polluted sites in the Colorado Rocky
205	Mountain streams (USA), whereas Hill et al. (2000) were unable to relate species
206	richness with metal concentration in a Rocky Mountain stream polluted with heavy
207	metals. Gold et al. (2003a) reported higher Shannon index (H'), the same species richness
208	and a low cell density at the metal polluted (Cd and Zn) sites in comparison to reference
209	sites. In contrast, Sabater (2000) found that heavy metals in water and sediments were
210	significantly and negatively affecting various diatom metrics (evenness, diversity and
211	diatom indices). In addition, they also reported marked and long-lasting effects of heavy
212	metals on the periphytic diatom communities from impacted versus reference sites of the
213	Guadiamar River, South-West Spain. This inconsistency of diatom diversity indices and
214	lack of significant correlations between diversity, evenness and environmental variables
215	is in accordance with the "Intermediate Disturbance Hypothesis", which assumes a
216	parabolic relation between diversity and water quality, with the highest diatom diversity
217	at intermediate pollution levels (Van de Vijver and Beyens, 1998; Hirst et al., 2002).

218 Ricciardi et al. (2009) reviewed the status of biological communities in rivers in 219 relation to chemical contamination and reported two major constrains in diversity and 220 pollution studies. First, they found that the use of a single diversity index or small 221 number of diversity indices was inadequate. The different biodiversity indices assess 222 different types of information and using only one of these indices (types of information) 223 is not enough to adequately define biological diversity. Multivariate-analysis studies that 224 combine both conventional and taxonomy-based indices and possibly different trophic 225 levels provide a more comprehensive view of the diversity status of an ecosystem and its 226 potential response to pollutants. Second, they advocated the use of coupled chemical and 227 biological analyses to evaluate water-quality status and the effect of chemicals on fluvial 228 biological diversity, thus promoting a multidisciplinary approach. Further, they recommended incorporating a variety of types of biodiversity indices, especially when 229 230 using algae (diatoms) for assessing the chemical status of aquatic systems. According to 231 Stevenson et al. (2010), composite indices that incorporate both the richness and 232 evenness elements of diversity are needed to characterize the kind and severity of 233 pollution in fluvial ecosystems. Similarly, Blanco and Bécares (2010) found that the 234 simultaneous use of several diatom indices is required to detect and evaluate the huge 235 spectrum of potential pollutants in river basins. 236 Changes in species composition tend to be the most sensitive response when

comparing impacted and reference diatom assemblages (Stevenson, 1984; Jüttner et al.,
1996). Species composition is often examined as relative abundance of diatom species in
the community; a metric frequently used for deciphering the ecological health of
waterbodies (Medley and Clements, 1998; Gold et al., 2002, 2003a; Morin et al., 2008a;

241 De Jonge et al., 2008; Stevenson et al., 2010; Duong et al., 2012; Morin et al., 2012; 242 Arini et al., 2012a,b,c; Pandey et al., 2014, 2015, 2016; Gautam et al., 2017). Lavoie et 243 al. (2006) reported relative abundance as a more informative tool than other community 244 parameters (especially biovolume of the community) for biomonitoring. In this study, 245 analyses conducted on diatoms grouped by size showed that small and large taxa have 246 similar responses to the water chemistry variables (total phosphorus, soluble phosphorus, 247 total dissolved nitrogen, nitrates, ammonia, temperature, dissolved oxygen, conductivity 248 and dissolved organic carbon). Furthermore, they found that biovolume estimation 249 analysis provided no extra information but required considerably more time, money and 250 human expertise. Similarly, Litchman et al. (2008) concluded that data on the relative 251 abundance of different diatom sizes in diverse aquatic ecosystems may indicate high variation in distribution, reflecting a variety of immediate, system-specific selective 252 253 pressures. Stevenson et al. (2010) also found relative abundance of diatom genera and 254 species as the most valuable attribute of diatom assemblages because several multimetric 255 indices of biotic and ecological condition have been developed for bioassessment using 256 relative abundance. Furthermore, Schindler (1990) reported that in most field sampling 257 situations, species composition should be more sensitive to changes in environmental conditions than changes in biomass or metabolic rates, especially when stresses have 258 259 existed long enough for immigration of new species and accrual of rare taxa that are 260 stress-tolerant.

Relative abundance data can become informative through the use of ordination,
clustering and similarity indices (Stevenson et al., 2010). More specifically, ordinationbased multivariate analysis (e.g., correspondence analysis, detrended correspondence

264	analysis, non-metric multidimensional scaling, principal component analysis and
265	distance-based redundancy analysis) was developed to relate community composition to
266	measured variation in the environment. Ordination plots obtained in the analyses are
267	linear combinations of environmental variables, along which the relative distributions of
268	species assemblages. Ordination plots help in visualizing the pattern of community
269	variation, distributions of species and assemblages among environmental variations, and
270	can be used for indicating species-environment relationships. (ter Braak, 1986; ter Braak,
271	1987; ter Braak and Šmilauer, 2002). Furthermore, ordination and clustering can be used
272	to show assemblages that differ from other assemblages, which may be caused by
273	anthropogenic impacts (e.g. Chessman, 1986; Stevenson and White, 1995). Thus,
274	incorporation of these analyses (any one) provides a simple, easy-to-understand
275	description of the percent change in species relative abundances between assemblages at
276	assessed and reference sites.

277 Diatom diversity indices and their relative abundance in the diatom communities 278 are widely used to indicate the presence and extent of organic and inorganic contaminants 279 in fluvial ecosystems. In most studies, these routinely used indices provide a statistically 280 weak relationship between diatom diversity and pollutants. Thus, in the light of this 281 result, there is an urgent need to incorporate new types of diatom-based indices (e.g., a 282 taxonomic composition based index), which can provide reliable information using 283 statistical tools. Improvement in taxonomic resolution of diatom species, use of 284 composite indices (richness, evenness, diversity and dominance), increased cell counting 285 (3000-8000 valves) and simultaneous use of several indices to detect and evaluate the 286 huge spectrum of potential pollutants have been proposed to improve the efficacy of

- 287 diatom-based ecotoxicological assessments (Blanco and Bécares, 2010; Stevenson et al.,
- 288 2010; Rimet and Bouchez, 2011).
- 289 2.2. Cell densities and biovolume of the community
- 290 Changes in community cell densities and biovolume represent an important tool for
- diatom-based community bioassessment (Pandey et al., 2014). Diatom densities are
- estimated using various methods, such as counting cells with a Spencer's
- haemocytometer at 450x magnification, and densities are converted to biovolume by
- applying geometrical volume formulas for generalized diatom shapes (Hillebrand et al.,
- 295 1999). Alteration in the cell density and biovolume of the diatom in biofilms has been
- variously attributed to current velocity (Ghosh and Gaur, 1998), diatom emigration and
- 297 immigration (Stevenson and Peterson, 1991), grazers (Colletti et al., 1987; Arini et al.,
- 2012b), pesticides (Pérès et al., 1996; Debenest et., 2009; Debenest et al., 2010; Morin et
- al., 2010) and heavy metals (Gold et al., 2002; Pandey et al., 2014). Cell density and
- 300 biovolume changes (either single or together) following the translocation of diatom
- 301 assemblages between non-impacted and impacted locations has been used to assess the
- 302 level of disturbance in the waterbodies (Gold et al., 2002, 2003a,b; Duong et al., 2012;
- 303 Arini et al., 2012a,b,c). Under heavy metal stress, translocation-based studies indicated
- 304 differential response for the direction of translocation. Specifically, in moving from
- 305 polluted to unpolluted conditions, total diatom density showed rapid changes (in 2
- 306 weeks), but this change was much slower in the opposite direction, in that the worsening
- 307 water quality imposed on the very dense biofilm matrix from non-polluted conditions
- 308 took more than 4 weeks to show clear modifications, despite the presence of

309 contaminants, the poor conditions of oxygenation, and high levels of nutrients (Gold et310 al., 2002; Duong et al., 2012).

311 Although diatom densities in biofilms have been widely reported as a relevant 312 bioindicator of heavy metal contamination (Gold et al., 2003a,b; Morin et al., 2008a; 313 Duong et al., 2010; Morin et al., 2010), the usefulness as a bioassessment tool has not 314 been consistent and has been criticized. Major reasons for this criticism is not including 315 biotic variable (e.g., immigration, emigration, grazers etc.) (Stevenson and Peterson 1991; 316 Stevenson et al., 1991; Sabater et al., 2002; Arini et al., 2012b) and abiotic variables 317 (substrates, pH, conductivity, alkalinity) (Medley and Clements, 1998; Potapova and 318 Charles, 2005) that can also strongly influence diatom densities. For example, heavy 319 metal contamination can indirectly affect diatom cell density by reducing the density of 320 grazers in contaminated sites, which can lead to the unexpected finding in some field 321 studies that higher diatom cell densities occurred at contaminated sites than at reference 322 sites (Guasch et al., 2016). Sabater et al. (2002) suggested the need for closer attention to grazing effects on biofilm function, since grazing can affect the performance of biofilms 323 324 in the amelioration of river water quality. Diatom cell density response to pesticide 325 exposure may not be consistent (Debenest et al., 2010). For instance, atrazine exposure may decrease cell density in some centric diatom species, and increase cell density for 326 327 some pennate diatom species (Bérard and Benninghoff, 2001; Bérard et al., 2004). In 328 contrast, another herbicide, isoproturon, consistently impacts diatom cell densities (Pérès 329 et al., 1996; Schmitt-Jansen and Altenburger, 2005; Debenest et al., 2009). 330 Biovolume estimation of diatom communities has been used for bioassessment, as

an alternative to cell counts for representing the level of stress in diatom biofilms (Ricart

332	et al., 2009; Pandey et al., 2015). Cell biovolume has the advantage of measuring the
333	contribution of each algal group or taxa relative to primary production (Hillebrand et al.,
334	1999; Lavoie et al., 2004; Cloern and Dufford, 2005; Larras et al., 2014b). Cell
335	biovolume may have another advantage. Under stress, diatom density may increase or be
336	unchanged because of the disproportionate growth of small and adnate diatoms (Medley
337	and Clements, 1998; Gold et al., 2002, 2003a,b; Duong et al., 2012; Arini et al., 2012b,c;
338	Morin et al., 2008a; Morin et al., 2012; Leguay et al., 2016; Pandey and Bergey, 2016),
339	which may lead to erroneous findings based on cell counts; that is, that the investigated
340	system may not be under any type of stress. In this case, use of community biovolume
341	would be more appropriate for bioassessment than cell counts. As an example, Arini et al.
342	(2012b) reported a gradual increase in cell density with gradual decrease in diatom
343	biovolume of the community at sites heavily contaminated with heavy metals in a
344	laboratory experiment. Similarly, Barral-Fraga et al. (2016) reported appreciable
345	reduction in mean (approximately halved) and total diatom biovolume in a diatom
346	dominated biofilm exposed to arsenic versus the control, which had no apparent
347	difference in biofilm cell density. Alternatively, no pattern in density and biovolume of
348	the diatom community have been reported under stress (Arini et al., 2012b,c). Chemical
349	exposure can produce similar results. Ricart et al. (2009) reported a concentration
350	dependent decrease in the diatom biovolume under exposure to the herbicide diuron,
351	which was associated with the predominance of smaller growth forms in the biofilm
352	(Sabater and Admiraal, 2005). In addition, Ricart et al. (2009) found that the EC_{50} values
353	for the biovolume were extremely low, indicating that this was a highly sensitive
354	parameter to diuron exposure, and that effects might be significant in nature. Furthermore,

355 NEC and EC50 values obtained with the community biovolumes were generally lower 356 than the ones obtained using short-term single-species tests, as registered in the US EPA database (i.e. Gatidou and Thomaidis 2007 (EC50 = 27 μ g L⁻¹, *Navicula forcipata*, 357 growth); Ma et al., 2002 (EC50 = 4.3 µg L^{-1} , *Chlorella vulgaris*, growth); Podola and 358 Melkonian 2005 (EC50 = 6.4 μ g L⁻¹, *Cryptomonas* sp., chlorophyll-a fluorescence). This 359 comparison emphasizes the relevance of using natural communities to test environmental 360 361 effects.

362 Traditionally used community parameters (e.g., cell density, biovolume) provide useful information about the nature of community but there is a major drawback. These 363 364 parameters are investigated by counting 500-1000 diatom frustules in each sample. The quality of this well-accepted practice has been criticised (Hillebrand et al., 1999; 365 Takabayashi et al., 2006). Accurate frustule counts require taxonomic expertise of 366 367 diatoms, a skill that is often hampered by inadequate or not readily assessable taxonomic 368 resources. Furthermore, small size of diatoms, even of the most common taxa, can be 369 difficult to identify using light microscopy and hence making the investigation more 370 complicated. Some diatom species or individuals may be in valve, girdle, or tilted 371 orientations when viewed and diatoms in different orientation look markedly different 372 from each other, making diatom identification more complicated. Additionally, counts 373 require a lot of time (and, hence, expense). More specifically, investigation of diatom 374 community biovolume is regularly criticized as it requires time-consuming measurements 375 of diatom frustule dimensions (length, width and height) followed by estimation of 376 biovolume, using formulae based on generalized diatom shape, which will again increase 377 the time and cost of research.

378 2.3. Sensitive and tolerant species

379 Diatoms inhabit all types of waterbodies and contain troves of diversity in terms of 380 taxonomy, morphology and ecology (Larras et al., 2014a). Due their rapid turnover time, 381 diatoms respond quickly and also recovery much faster than other algae (Cattaneo et al. 382 2004; Morin et al., 2008a; Stevenson et al., 2010). Different species of diatoms respond 383 differently and characteristically to environmental (e.g., pH, salinity, ionic content, 384 dissolve organic carbon; Sabater et al., 2007; Potapova and Charles, 2007) and 385 anthropogenic (e.g., nutrients, heavy metals, pesticides, herbicides; Kelly and Wilson, 2004; Falasco et al., 2009; Larras et al., 2013) stressors (Fig. S1). Because of these 386 387 characteristics, diatoms are used globally for assessing the ecological health of 388 waterbodies. 389 Although individual diatom species may be good indicators of certain conditions, 390 the genus level is often also useful. For example, at the genus level, certain diatoms 391 (Eunotia, Fragilaria, Navicula, Nitzschia and Pinnularia) can be excellent bioindicators 392 for acid mine drainage (AMD) (DeNicola, 2000; Morin et al., 2012; Pandey and Bergey, 393 2016). Similarly, Larras et al. (2014a) found diatom sensitivity to herbicides and reported 394 that centric and araphid diatoms (Thalassiosirales and Fragilariales, respectively) included the most sensitive species whereas most resistant species were mainly pennates 395 396 (Cymbellales, Naviculales and Bacillariales). Meanwhile, Van Dam et al. (1994) found 397 that the genera Nitzschia and Achnanthidium were characteristic of polluted waters 398 receiving either nutrients or organic biodegradable materials, *Pinnularia* and *Cymbella* 399 were found proportionally more numerous in pristine conditions than polluted ones and

400 the abundant genus *Navicula* was ambiguous in terms of the water quality.

401	In contrast, many authors suggest that species-level identification of diatoms is
402	adequate for routine biomonitoring (Pérès et al., 1996; Guasch et al., 1998; Dorigo et al.,
403	2004; Morin et al., 2009). Rimet, (2012) reviewed the status of diatoms as indicators of
404	river pollution and found that species-level studies were more common than genus-level
405	studies; indeed, community, assemblage, group and taxa level studies were more frequent
406	than genus level-studies.
407	Ecological assessments at finer taxonomic levels are very useful. For example, the
408	species Eunotia exigua and Achnanthidium minutissium are tolerant of acidic and heavy
409	metal contaminated waters, i.e., occurring at AMD sites (DeNicola, 2000). Similarly,
410	several diatom species are regularly reported in lotic environments exposed to toxic
411	events, and these species are considered as indicators of organic matter (Palmer, 1969),
412	pesticides (Debenest et al. 2010; Rimet and Bouchez, 2011; Roubeix et al., 2011, 2012)
413	and metal pollution. Such tolerant taxa include Achnanthidium minutissimum, Fragilaria
414	spp., Nitzschia palea and Ulnaria ulna (previously Synedra ulna) (Palmer, 1969; Ruggiu
415	et al., 1998; Gold et al., 2002; Passy, 2007; Morin et al., 2008a,b; da Silva et al., 2009;
416	Debenest et al., 2010; Rimet and Bouchez, 2011; Luís et al., 2011; Roubeix et al., 2011b;
417	Morin et al., 2012; Roubeix et al., 2012; Pandey and Bergey, 2016).
418	This short literature review illustrates that diatoms show varied response to
419	different types of contaminants. These responses may vary depending on the
420	biogeographical region of study (Smol and Glew, 1992), in part because of taxonomic
421	ambiguity of some widely distributed species (e.g., Achnanthidium minutissimum,
422	Nitzschia fonticola, Sellaphora pupula, Caloneis sp., Nitzschia sp. and Gomphonema sp.)
423	(Mann and Droop, 1996; Potapova et al., 2004; Trobajo et al., 2006; Potapova and

424	Hamilton, 2007; Trobajo et al., 2013; Pandey et al., 2016). Although diatom checklists
425	and taxonomic ratings are regionally available for assessing the water quality (especially
426	nutrient enrichment) in waterbodies (Palmer, 1969; Van Dam et al., 1994), no such well-
427	developed resources exist for assessing heavy metal stress and organic contaminations,
428	which is an urgent need.
429	2.4. Life-forms and ecological guilds
430	Diatoms have different strategies that resist or tolerate environmental stresses,
431	such as grazing, flow disturbance, and nutrient resource limitation, which may
432	differentially affect different life-forms: benthic, planktonic, mobility, colonial, tube-
433	dwelling, stalked and adnate. Additionally, some species can be considered pioneers
434	(early colonists), whereas others may be late successional species (Rimet and Bouchez,
435	2011). In contrast to these life forms, ecological guilds comprises group of species that
436	live in same environment and exploit the same resources but are adapted in different
437	ways to abiotic factors (Passy, 2007; Rimet and Bouchez, 2011; B-Béres et al., 2014).
438	These biological traits provide additional information about the structure and architecture
439	of biofilms.
440	Sporadic attempts have been made to explore life history characteristics and
441	morphological growth forms of diatoms against natural (Passy and Larson, 2011;
442	Gottschalk and Kahlert, 2012; Stenger-Kovács et al., 2013; B-Béres et al., 2014;
443	Svensson et al., 2014) and anthropogenic (Passy, 2007; Berthon et al., 2011; Larras et al.,
444	2014b) disturbances in fluvial ecosystems. The need to incorporate these parameters in
445	the ecotoxicological studies has been regularly advocated (Medley and Clements, 1998;
446	Rimet and Bouchez, 2011; Elias et al., 2015). Physico-chemical changes within fluvial

447	biofilms produce different successional patterns. According to Passy and Larson (2011)
448	algal colonization or succession is result of stresses; driven primarily by nutrient supply
449	and secondarily by current velocity of laboratory stream. On the other hand,
450	anthropogenic disturbances also have significant effects in terms of changing the
451	successional patterns of diatom species in the community, especially under heavy metal
452	contamination. For example, Medley and Clements (1998) found that small and adnate
453	(pioneer) diatom species, such as Achnanthidium minutissimum and Fragilaria
454	vaucheriae, dominate in the streams polluted with Zn. Field studies of periphytic diatom
455	communities collected from acid mine drainage areas regularly show the dominance of
456	pioneer diatom taxa, especially Achnanthidium minutissimum (Cattaneo et al., 2004;
457	Lavoie et al., 2012; Cantonati et al., 2014; Pandey et al., 2016; Luís et al., 2011; Morin et
458	al., 2012). Pandey et al. (2015) reported dominance of pioneer forms in lab cultured
459	diatom communities under Cu and Zn stress (100 ppm). In comparison to the heavy metal
460	stress, diatom biological metrices were more studied under organic contamination (such
461	as, diuron, metolachlor, acetochlor, azoxystrobin and tebuconazole). For example, Rimet
462	and Bouchez (2011) reported dominance of motile, low-profile and mucous tube forms of
463	diatoms under herbicides (diuron) and fungicides (azoxystrobin, tebuconazole) exposure
464	at environmental concentrations in lotic mesocosm experiments. Similarly, Roubeix et al.
465	(2012) reported the dominance of pioneer or low profile guilds (with Achnanthidium
466	minutissimum, Cocconeis placentula and Planothidium rostratum) and motile forms or
467	guilds (Nitzschia palea) in the periphytic diatom communities exposed to metolachlor
468	and acetochlor. In contrast, pesticides, including chloroacetanilides, modify the 3-D
469	structure of more complex (multispecies) biofilms by reducing biofilm thickness and the

470 distribution of the life forms; i.e., replacement of sensitive diatom species like 471 Achnanthidium minutissimum or Eolimna minima (pioneer forms or low profile guild) 472 with more tolerant species like Nitzschia lanceolata (motile forms) under metolachlor 473 exposure (Roubeix et al., 2011a). Similarly, Ricart et al. (2009) showed that diuron 474 modified the composition of periphytic diatom communities. After 1 month at a 475 concentration of 7 ppm, F. capucina (high profile) was eliminated, but remained in 476 control conditions (though at very low abundance), the abundance of A. minutissimum 477 (low profile) was reduced and Nitzschia palea (motile guild) appeared indifferent to the 478 presence of diuron. Recently, Larras et al. (2014b) reported that natural seasonal variation 479 of diatom diversity (and so of sensitivity) significantly affect the community response to 480 mixture of herbicides, as protective threshold for the herbicides mixture obtained in the 481 winter community was not found same for the summer community based on their 482 structural parameters. Thus, a significant difference was examined in terms of diatom 483 community shift under heavy metal stress and organic contamination (herbicides or 484 pesticides) namely, heavy metal stress resulted in more pioneer life forms or low profile 485 guilds whereas organic contamination promoted motile forms. 486 Recognizing the roles of both life-forms and ecological guilds within biofilms enables better understanding of species-environment relationships and interactions 487 488 (Passy, 2007; Passy and Larson, 2011; Berthon et al., 2011; Rimet and Bouchez, 2011; 489 B-Béres et al., 2014). The major advantage of incorporating one or both biological 490 metrics into ecotoxicological studies is their ease of use because there are so few 491 categories in each metric. With few categories and application to all biofilms, these 492 biological metrics often display robust and predictable responses to ecological gradients.

493	Biological metrics are often characteristic of the genus level for diatoms and therefore are
494	easy to use for routine monitoring purposes. These diatom metrics transform complex
495	ecological information at species level into a clearer dataset with more robust trends and
496	more easily testable hypotheses (Potapova and Charles, 2007; Rimet and Bouchez, 2011;
497	Rimet et al., 2012). Thus, biological metrics should be incorporated into the suite of
498	diatom metrics used in effective water quality bioassessment in rivers. Indeed, Medley
499	and Clements (1998) suggested incorporating periphyton community responses to
500	pollutants in terms of life-history traits, ecological strategies, and morphological forms as
501	a tool for water quality assessment.
502	3. New endpoints
503	3.1. Alterations in cell integrity
504	3.1.1. Nuclear anomalies
505	According to Bidle and Falkowski (2004), planktonic photosynthetic microorganisms
506	undergo programmed cell death (PCD) in response to environmental stress. Chromatin
507	condensation, migration to the edge of the nuclear membrane and fragmentation are the
508	chief morphological markers of PCD (Bidle and Falkowski, 2004). Very few reports
509	indicate how intracellular organelles, more specifically the nucleus of live diatoms, react
510	to different environmental and anthropogenic disturbances (Coombs et al., 1968; Cassotti
511	et al., 2005). To the best of our knowledge, Desai et al. (2006) is the first report of
512	genotoxic effects of metals in diatoms. Using comet assays on Chaetoceros tenuissimus,
513	the authors found that an elevated cadmium level damaged the nuclear material in cells
514	and that the degree of injury increased with progressive exposure. Debenest et al. (2008)
515	studied the effect of the herbicide maleic hydrazide on a freshwater benthic diatom

516 community in the laboratory by exposing the community to three herbicide 517 concentrations, using an exposure time of 6h, followed by a 24h recovery period. After 518 the maleic hydrazide treatment, a dose-dependent increase in nuclear alterations was observed (abnormal nucleus location, micronucleus, multinuclear cell or disruption of the 519 520 nuclear membrane) and the difference between the control and highest dose of herbicide-521 treated samples was statistically significant (Fig. 1). Similarly, Licursi and Gómez (2013) 522 reported alteration in nuclear region (abnormal nucleus location and nuclear membrane 523 damage) in the epipsammic diatoms Fallacia pygmaea and Navicula novaesiberica after 524 7 days of Cr (IV) (chromium) treatment, but the difference was not statistically 525 significant after 3 days of Cr treatment. Effects of chromium exposure differ among taxa, 526 as no nuclear alterations were found in *Nitzschia palea* after Cr (IV) treatment (Fig. 1). 527 Investigation of nuclear abnormalities in diatoms reveals the effects of pollutants (metals 528 and herbicides) on the microproducers forming the basal trophic level of in fluvial 529 ecosystems, which helps in understanding mechanisms of change in biofilm composition, especially increasing dominance of the most tolerant diatom species, as well factors that 530 531 might lead to morphological anomalies in diatom frustules (Debenest et al., 2008; Licursi 532 and Gómez, 2013).

533 3.1.2. Alteration in the cell membrane and cytoplasmic content

Diatoms are well known for their transparent silica frustules and, as a result, it is very
easy to observe the intracellular changes (in chloroplast, cytoplasm, lipid bodies and
vacuoles) under light microscopy. Alterations of cell membrane of diatoms are used to
determine whether the examined cell is alive or dead (Radchenko and II'yash, 2006;
Manoylov, 2014). Morin et al. (2012) reported that metal toxicity on diatoms is linked to

539 different steps in the circulation of the toxicant across the membrane (especially uptake 540 mechanisms) and inside the cell, inducing perturbations in the normal functioning of 541 structural/functional intracellular components. Percent alteration in cell membranes was 542 calculated by measuring the changes in the perimeter of the cell membrane with respect 543 to the control specimens by using Motic (Motic, BML series, Hong Kong) or Image J 544 software (Fig. 2). Alterations was rated on the scale: 0 % denoted intact cell membrane 545 state, 25, 50, 75, and 100% denoted altered membrane state in less than one-quarter, a 546 quarter to a half, a half to three-quarters, and more than three-quarters of the live diatom cells, respectively. Franklin et al. (2006) reviewed the status of programmed cell death in 547 548 phytoplankton ecology and advocated the use of cell viability as a health indicator. 549 Membrane integrity indicates the viability of live diatom cells and, as such, can be used to indicate health in studies of species succession and food-web structure (Veldhuis et al., 550 551 2001). Drum (1966) studied the degree to which plasmolysis in the anterior and posterior 552 ends of the protoplast affect cell adhesion and movement by the diatom Pleurosigma 553 angulatum. Bidle and Falkowski (2004) reviewed the status of cell death in planktonic 554 and photosynthetic microorganisms and concluded that under adverse environmental 555 conditions (nutrient deprivation, intense light, excessive salt concentrations or oxidative 556 stress), a wide variety of phytoplankton undergo apoptosis (programmed cell death), with 557 early symptoms including cell shrinkage. Chang et al. (2011) quantified cell integrity of 558 the diatom Nitzschia palea and the cyanobacterium Microcystis aeruginosa before and 559 after β -cyclocitral addition and they found that cells of *N*. *palea* ruptured at a much lower 560 concentration (5-10 ppm) of β -cyclocitral than in *M. aeruginosa* (200-1000 ppm). 561 Armbrecht et al. (2014) studied cell death and aggregate formation in a giant diatom

562	Coscinodiscus wailesii and reported autolysis in the cytoplasm of C. wailesii under Si and
563	N deficiency. In a laboratory experiment with Ditylum brightwelli and Chaetoceros
564	calcitrans, Veldhuis et al. (2001) found correlations among changes in membrane
565	permeability, photosynthetic activity, pigmentation and growth. In this study, fully
566	disintegrated cell membranes were considered non-viable. Wei et al. (2014) found that a
567	large blank space appeared between the plasma membrane and the cell wall in Cu treated
568	cells (Phaeodactylum tricornutum), indicating that the plasma membrane was damaged
569	and separated from the cell wall. Compared to the control, the mitochondria and nuclei in
570	the Cu-treated cells were swollen and their membranes appeared smeared. More recently,
571	Morin et al. (2016) found that in the lower Matanza-Riachuelo basin (Argentina), strong
572	symptoms of eutrophication and high amounts of organic matter and heavy metals can be
573	diagnosed through high percentages of cytological abnormalities and thus advocated the
574	need for incorporating cytological abnormalities (cytoplasmic content impaired) in
575	diatoms for the detection of changes of the water quality associated with toxic pollution.
576	This testing methodology of using cell membrane and other visible cytological
577	features to relate diatom health and, possibly, the ecological status of fluvial ecosystems
578	with the effects of toxins is relatively quick and takes little expertise in diatom taxonomy
579	(Pandey et al., 2014). Cytoplasmic alterations or autolysis of cytoplasmic content (a
580	viability assay) (comparing images of controls and treated samples; treated samples
581	showed contracted or irregular shapes compared to the control) adds a new and important
582	approach in addressing the physiological condition within a single population and thereby
583	provides information on the health status of diatom communities, which can be a tool for
584	both ecotoxicological and bioassessment studies relating to diatom biology.

365	5.1.5. Alteration in chioroplasis (shape, size, color and number)
586	In diatoms, chloroplasts intactness is rarely considered as a tool for ecological
587	bioassessment or for ecotoxicological assessments (Arini et al., 2012b,c). Sporadic
588	attempts have been made to establish live (with intact chloroplast) and dead (with empty
589	frustules) diatoms (Fig. 2) as a tool for bioassessment and the ecological health of
590	waterbodies (Gillet et al., 2009 and 2011). Generally, smaller chloroplast volume and less
591	thylakoid surface density were observed in diatoms under light and nutrient stress (Rosen
592	and Lowe, 1984; Janseen et al., 2001). Lommer et al. (2012) reported shrinkage of the
593	chloroplast system in iron-limited Thalassiosira oceanica cells. They found that Fe
594	limited cells had a reduced number of two chloroplasts, instead of the normal four. Renzi
595	et al. (2014) also reported alteration in the photosynthetic complex (by using confocal
596	and optical microscopy along with cell fluorescence) as a sensitive and powerful early
597	warning tool for evaluating sub-lethal effects of Cu, Zn and methylene blue active
598	substance (MBAS). Arini et al. (2012b,c) reported that under Cd and Zn toxicity showed
599	no significant effect on the health of diatom cells assessed in terms of presence and
600	absence of chloroplasts. However, under organic contamination, the effect on chloroplast
601	was more apparent. For example, Wood et al. (2014) developed an excellent toxicity test
602	for diatom cells by using the intactness of stained chloroplasts for assessing the toxicity
603	of atrazine over a period of 48 hours. Cells were classified depending on the condition of
604	the stained chloroplast i.e., if it appeared more than 50 % intact then it was classed as a
605	healthy cell, and if the chloroplast was $< 50\%$ intact or absent then it was classed as
606	unhealthy. In this study they found that exposure to their highest treatment of atrazine
607	(500 μ g L ⁻¹) produced significant declines in healthy cells of the most sensitive genera:

3.1.3. Alteration in chloroplasts (shape, size, color and number)

608	Gomphonema declined by 74%, Amphora by 62%, Cymbella by 54% and Ulnaria by
609	34%, compared to control levels. In contrast, the genera, Eunotia, Achnanthidium and
610	Navicula, had no statistically significant decline in cell health. By using the same
611	methodology (intactness of chloroplast), Wood et al. (2016) reported that natural benthic
612	diatom communities respond to eight common herbicides (atrazine, simazine,
613	hexazinone, tebuthiuron, diuron, MCPA, 2,4-D and glyphosate) in which the most
614	sensitive taxa were Gomphonema spp., Encyonema gracilis and Navicula cryptotenella
615	was the most tolerant to herbicide exposure. There was no significant effect of the
616	different herbicide modes of action at the community level. In several studies, alterations
617	in the diatom chloroplast morphology was clearly observed under different stresses, such
618	as, heavy metals (Licursi and Gómez, 2013; Pandey and Bergey, 2016) and herbicides
619	(Debenest et al., 2008).
620	Alteration in diatoms chloroplast morphology (shape, size and number) is a rapid
621	and simple toxicity testing method to obtain sensitivity data for multiple taxa within a
622	natural benthic diatom community in a relatively short period of time, warranting further

623 development of chloroplast metrics as an assessment tool. Note, however, that the

624 number and shape of chloroplasts may vary between species.

625 *3.3. Lipid bodies*

626 Different classes of algae are characterized by the type of food reserve stored inside their

627 cells (Barsanti et al., 2008). Diatoms (Bacillariophyceae) are unique in storing lipids,

628 which occur in intracellular lipid bodies (LBs), as a reserve food material (Figs. 3 and 4).

- 629 In diatoms, LBs become more prominent (in terms of number as well as in size) under
- 630 various types of environmental and anthropogenic perturbations (Ramachandra et al.

631 2009; Hildebrand et al. 2012) (Tables 1 and 2). Increased oil reserves may aid cell 632 survival during unfavorable conditions. In an early observation, Evans (1960) reported 633 that Pinnularia biceps f. minutissima cells along pond edges that had large oil globules 634 survived desiccation better than cells with fewer lipids. Cells lacking oil globules sometimes plasmolysed and were unable to recover when put back into a liquid medium. 635 636 LB inductions are apparent under nitrogen starvation (Jiang et al., 2012; Guerra et 637 al., 2013), which may also lead to a lower growth rate, an association meaning that 638 reducing nitrogen may not be a good mechanism for increasing lipid yield (Hildebrand et 639 al., 2012; Frada et al., 2013). In the same context, Julius and Theriot (2007) reported that 640 under environmental stress, LB induction in diatom cells is associated with modification 641 in chloroplast number. They also proposed that the chlorophyll to lipid ratio could be used as a tool to measure the health of diatom cells. 642 643 In contrast to the effects of nutrients, the effects of heavy metal stress on LBs is 644 relatively unexplored (Pandey et al., 2015). Joux-Arab et al. (2000) reported higher lipid content in the diatom Haslea ostrearia under Cu stress in comparison to the control 645 646 treatment in a laboratory study, but the difference was not statistically significant. 647 Similarly, Lelong et al. (2013) described increased lipid content in Cu-starved cells of 648 Pseudo-nitzschia, but no effect was observed in severe Fe-limited Pseudo-nitzschia cells. 649 In contrast, mild Fe limitation produced a 100 % increase in lipid content but under Cu 650 and Fe co-limitation, lipid content (per cell and per unit biovolume) decreased slightly. 651 More recently, Pandey et al. (2015) reported induction of LBs (increased number and 652 size) in a lab cultured phytoplanktonic community under Cu and Zn stress, which was also associated with deformities in the silica frustules of live diatoms. Similarly, Pandey 653

and Bergey (2016) reported higher LBs (number and biovolume) at mining sites severely
polluted with Cu and Zn. The number and size of LBs have also been explored as a stress
indicator in other algal classes, such as cyanobacteria (Peramuna et al., 2014), green
algae (Andrade et al., 2004; Liu et al., 2008; Wang et al., 2009) and dinoflagellates
(Weng et al., 2014).

659 The mechanism causing induction of lipid bodies in diatoms is not yet known. LB 660 formation is associated with the degradation or alteration of the photosynthetic apparatus 661 of diatoms (Julius and Theriot, 2007; Lommer et al., 2012; d'Ippolito et al., 2015). Lipid bodies may also be a site for accumulating heavy metals (Pb and Cu) by forming lipid 662 663 complexes with the toxicants (Lombardi and Vieira, 1999, 2000). Lipids are used as both a reserve food material and as a buoyancy organelle; buoyancy that counters the heavy 664 weight of the silica frustules and aids in the maintenance of a depth in the water column 665 666 appropriate for accessing light and nutrients. Buoyancy due to lipid bodies has also been reported in the planktonic green alga *Botryococcus* floating on the surface of a small lake 667 668 (Belcher, 1968).

669 Induction of lipid bodies in diatoms apparently has multiple functions, including 670 use in combating stress. Walsby and Reynolds (1980) concluded that the reduction in 671 density due to intracellular lipid accumulation contributes to a reduced rate of sinking in 672 diatoms, but they are also of the view that buoyancy-regulation is not the primary 673 function of lipid bodies. Significant induction of lipids (40% of the cell volume) inside 674 live diatom cells can indicate its poor health i.e., increase in LB volume with decrease in 675 chloroplast volume (Liang et al., 2015; Gautam et al., 2017). Alternatively, Wang et al. 676 (2013) reported that induction of LBs in live benthic diatoms assisted their movement.

677	Thus, lipid body induction indicates not only an improved energy capturing capacity of
678	diatoms, but can also act as a buoyancy regulator, as a reserve food material (Smetacek,
679	2001), an aid in diatom movement (Wang et al., 2013), reservoir for toxicants and as an
680	energy storing body that can be utilized in recovering from different types of
681	environmental and anthropogenic stresses. Lipid bodies and their induction in living
682	diatoms form a very promising basis for easy and rapid ecological assessments as well as
683	for biomonitoring of fluvial ecosystem.
684	3.4. Alteration in frustule size
685	Diatoms are well known for their robust, species-specific, ornamented silica frustules,
686	which are dependably replicated from generation to generation (Falasco et al., 2009).
687	However, these silica frustules are occasionally susceptible to alteration under various
688	types of environmental (Winder et al., 2009; Svensson et al., 2014) and anthropogenic
689	stress. These alterations include the production of various morphological forms
690	(phenotypic plasticity), size reduction and even frustule deformation (Kociolek and
691	Stoermer, 2010; Cox et al., 2012; Morin et al., 2012). According to Kociolek and
692	Stoermer (2010), variation in diatom cell wall morphology can be either size-dependent
693	or size-free. In the same context, Snoeijs et al. (2002) and Busse and Snoeijs (2003)
694	found that small and large diatom species residing in the same benthic community
695	respond differently to environmental variation (Si, nutrients, phosphate, salinity and wave
696	action). Size reduction is a normal feature of diatoms due to their vegetative mode of
697	reproduction (Laney et al., 2012), in which one cell of the original size and a slightly
698	smaller cell are produced during each cell division. Variation in size may be adaptive or
699	circumstantial (Kociolek and Stoermer, 2010). An example of an environmental effect

700	was reported by Trobajo et al. (2011), who found that saline concentration significantly
701	affected diatom width (and stria density) in Nitzschia frustulum and N. pusilla, but had no
702	effect on valve length in any of the five studied species.
703	Heavy metal enrichment is a major factor intensifying the naturally occurring
704	phenomenon of size reduction in diatom frustules (Fig. 5; Table 3) and can result in
705	significant reduction in diatom size (Morin et al. 2012; Cantonati et al., 2014). Cattaneo
706	et al. (2004) reported significant size reduction in four diatom species (Achnanthidim
707	minutissimum, Asterionella formosa, Brachysira vitrea and Tabellaria flocculosa)
708	collected from the heavy metal (Cd, Cu, Fe, Pb and Zn) polluted sediments of a
709	watershed of Lac Dufault (Québec, Canada) and Morin and Coste (2006) reported
710	significant reduction in two abundant diatom species, Gomphonema parvulum and
711	Nitzschia palea, collected from metal (Cd and Zn) polluted sites (Joanis and Usine) of
712	Riou Mort and Riou Viou streams of South West France. Similarly, Luís et al. (2011)
713	reported > 60 % size reduction in <i>Brachysira vitrea</i> at the abandoned mining area in
714	Portugal, which is highly contaminated with heavy metals (in both sediments and surface
715	water). Barral-Fraga et al. (2016) reported significant size reduction in different diatom
716	species (Amphipleura pellucida, Nitzschia dissipata, Nitzschia fonticola and Nitzschia
717	palea) treated with arsenic in a laboratory experiment.
718	The exact mechanism of intensified size reduction in diatom frustules is uncertain,
719	but according to Morin et al. (2012), size reduction can be the result of a higher cell

- 720 division rate that is inherent to organisms inhabiting stressed ecosystems. Climate
- 721 warming in conjunction with increased organic loads could also facilitate increased
- 722 phosphate availability (Wilhelm and Adrian, 2008), that could result in a decrease in

723	dissolved Si:P and decrease in light availability, potential favouring smaller diatoms,
724	especially in late spring and summer (Kilham et al., 1996; Finkel et al., 2009). The
725	phenomenon of significant reduction in diatom frustule size has potential use in
726	ecotoxicological studies, but further work is needed. Size reduction occurs more
727	frequently than cell deformity (see next section), but it is difficult to segregate the effects
728	of stress-related reduction from the natural tendency of diatom populations to get smaller
729	and smaller with successive cell divisions. Deformity and size reduction in diatoms often
730	occur together and if we able to establish that significant size reduction is due to stress, as
731	has been done previously (Cattaneo et al., 2004), then size reduction might prove to be a
732	valuable biomonitoring tool.
733	Larger cell size in diatoms has been reported under different types of stress, such
734	as light (Olson et al., 1986), temperature (Montagnes et al., 2001), long-term culturing
735	(Rose and Cox, 2013) and heavy metals (Stauber and Florence, 1987; Levy et al., 2008),
736	although some studies do not indicate a clear size trend (Montagnes, 2001; Levy et al.
737	2007). Greater cell size has been reported mainly in marine centric diatoms (Aulacoseira
738	sp. Biddulphia aurita, Cosinodiscus sp., Lauderia borealis, P. tricornutum, Skeletonema
739	costatum, Stephanopyxis turris, Thalassiosira weissflogii, and T. psuedonana). In
740	converse, pennate diatoms in any aquatic ecosystem are rarely reported as having larger
741	than expected cell size (Reavie and Barbiero, 2013).
742	Diatom size and changes in size (and surface area) might be associated to nutrient
743	absorption, especially in nutrient-limited (oligotrophic) environments. Increasing
744	frustules length or diameter is also considered an adaptation to reduce sinking rates
745	(Miklasz and Denny, 2010), which may be enhanced by a longer ice-free season and

746	stronger late-summer stratification. According to Kerrigan et al. (2015), climate warming
747	and increases in the duration of the growing season and stratified period may allow
748	greater accumulation of nutrients during transient mixing events in the spring and fall
749	overturns (Kilham et al., 1996), which may perhaps favor larger-sized diatom species in
750	the community. The relationship between cell size and genome size is of significant
751	importance in diatoms. For example, Koester et al. (2010) examined two isolated
752	population of Ditylum brightwellii from New Zealand and found that their increased sizes
753	are directly related with amount of DNA content in the cells. Similarly, van Tol et al.
754	(2016) recently reported a symbiotic association between bacteria (Croceibacter
755	atlanticus) and the marine diatom Thalassiosira pseudonana, which resulted in an
756	inhibition of cell division and induces the mean size of diatom cells to become longer.
757	These changes could be explained by an absence of cytokinesis that causes individual T .
758	pseudonana cells to elongate, accumulate more plastids and become polyploid.
759	Frustule morphology may differ strikingly between the largest and smallest cells
760	in a size series of a single species, or even a single clone (Cox et al., 2012), which is a
761	challenge to community analysis based on diatom size. Furthermore, size ambiguity in
762	diatoms illustrates that molecular bioassessment simply based on a DNA code may be
763	inadequate to describe diatoms because the expression of proteins depends on the unique
764	set of environmental conditions in which algae live and affects diatom shapes,
765	adaptations, and survival (Will and Rubinoff, 2004; Sluys, 2013). In addition, the identity
766	of most diatom taxa in the reference libraries of genetic sequences has not been
767	rigorously evaluated, so the reference library taxonomy may not be accurate for
768	molecular bioassessment (Manoylov, 2014).

3.5. Morphological deformities

770	Morphological abnormalities in diatom frustules are globally assessed under various
771	environmental (aging, crowding, tides, mechanical pressure, low current velocity,
772	drought, light intensity, temperature, moisture, salinity, pH, long-term culture, Si and
773	nutrients) and anthropogenic (heavy metals, herbicides and pesticides) disturbances
774	(Falasco et al., 2009) (Figs. 6 and 7). The proportion of valve abnormalities was inferred
775	directly from the taxonomical counts, by determining the percentage of individuals that
776	had unusual shape and/or ornamentation of the frustule. Deformations in diatoms were
777	first correlated with physical variables such as temperature, current velocity, flow and
778	rainfall, rather than with chemical variables (Gómez and Licursi, 2003). Recent studies
779	reported significant relationships between anthropogenic stresses (herbicides; Roubeix et
780	al., 2011b and heavy metals; Pandey et al., 2014) and abnormalities in diatom frustules.
781	For example, under natural conditions, the percent of deformed frustules was
782	significantly lower (0.35 %) than under heavy metal stress (1.0-4.0 %) (Falasco et al.,
783	2009; Morin et al., 2012; Pandey et al., 2014), whereas organic contamination was
784	associated with an intermediate deformity percent of between 0.32 and 1.5 % (Morin et
785	al., 2009; Debenest et al., 2008; Roubeix et al., 2011a).
786	Deformities in diatoms are often not associated with species that dominant under
787	various anthropogenic stresses. For example, Roubeix et al. (2011a) reported a higher
788	percent of deformity in a sub-dominant diatom species, i.e., Surirella angusta under
789	diuron exposure. Similarly, Duong et al. (2008) reported deformities in the diatom
790	species Fragilaria capucina, Gomphonema parvulum and Ulnaria ulna, which was
791	numerically average or sub-dominant in abundance. Dziengo-Czaja et al. (2008) also

reported deformities in diatom species that were not prevalent in the nutrient (phosphorus
and nitrite) enriched (organic matters) habitat. In contrast, deformities in dominant
diatom species (*Achnanthes minutissima* and *Brachysira vitrea*) occurred in waterbodies
contaminated with heavy metals (AMD sites) (Cattaneo et al., 1998, 2004; Luís et al.,
2011).

797 Araphid and monoraphid forms are more susceptible to deformation than other 798 morphological forms. For example, in the diatom genera Achnanthidium (Achnanthidium 799 minutissimum), Fragilaria (Fragilaria capucina and F. rumpens) and Ulnaria (Ulnaria 800 *ulna*), deformed frustules have been associated with various types of anthropogenic 801 perturbations (Gold et al., 2002, 2003b; Nunes et al., 2003; Duong et al., 2008; Morin et 802 al., 2008a; Roubeix et al., 2011b; Lavoie et al., 2012; Cantonati et al., 2014; Pandey et al., 2014, 2015; Pandey and Bergey, 2016). In contrast, Morin et al. (2008b) reported 803 804 more deformities in raphid forms (66 %) than araphid ones (33%) in a freshwater biofilm 805 exposed to Cd. However, under herbicide contamination, deformities were equally shared mainly between raphid and araphid forms (Debenest et al., 2008; Roubeix et al., 2011b). 806 807 The relationship of diatom size to deformity has been debated. Morphological 808 abnormalities are often missed in small diatoms when diatoms are viewed with light 809 microscopy (Morin et al., 2008c; Manoylov, 2014). Studies using scanning electron 810 microscopy indicate that small diatoms are as susceptible to deformities as larger species 811 (Morin et al., 2008c). However, according to Lavoie et al. (2012), the lower percentage of 812 deformed frustules in the small diatom Achnanthidium minutissimum may signify that 813 small species are less susceptible to morphological deformations, although Cantonati et 814 al. (2014) extensively studied (and found) deformities in this species from 8 different

815	sites in Europe and Canada. Furthermore, the length/width ratio of diatom species also
816	plays a role, especially in araphid forms, as species with higher length/width ratios are
817	generally more prone to deformation under stress than other shapes of diatom frustules.
818	Another issue to consider is the low percentage of deformed frustules even under
819	stress conditions, which is the major concern in assessing the use of deformities as a
820	biomonitoring tool. Incorrect identification of diatom species and the lack of proper
821	training to discriminate deformed frustules from normal ones are main reasons for lower
822	counts of deformity in diatom assemblages. In addition, permanent slide preparation
823	results in an inability to examine all sides of individual diatoms for deformities.
824	Examining all four views (two valve and two girdle views) of diatom frustules would
825	almost certainly increase the percent of deformed cells counted in samples with
826	deformities.
827	In diatoms, deformities are quantified as percentages by counting 500 or 1000
828	frustules in the community. In order to make deformities more informative, Falasco et al.
829	(2009) broadly classified deformities into 8 types, a classification refined by other
830	researchers (Arini et al., 2012b,c; Pandey et al., 2014, 2015), culminating into four types
831	i.e., deformities in valve (type I), striae (type II), raphe (type III) and mixed types (type
832	IV) (Table S1). All four types of deformity were examined under heavy metal
833	contamination by Cu and Zn in the field and laboratory conditions (Pandey et al., 2014,
834	2015) (Table 4). Reports of deformities in diatoms exposed to heavy metal pollution
835	indicate primarily of Type 1 (valve outline) and Type 2 (striae) deformities. Gómez and
836	Licursi (2003) reported the occurrence of all four types of deformities (valve, striations,
837	raphe and mixed) in the diatom species <i>Pinnularia gibba</i> in a periphytic biofilm in an

838	area with Cu and Zn contamination. Arini et al. (2012a,b) similarly reported prevalence
839	of deformed valves (type 1), deformed striations (type 2) and mixed deformities (type 4)
840	in the periphytic diatom community contaminated with Cd and Zn, and that type 3
841	(deformed raphe) deformities were present in low percentages. In field studies, Pandey et
842	al. (2014) and Pandey and Bergey (2016) found that deformed raphes (type 3) were more
843	prevalent under Cu stress than other deformities, but that deformed striations (type 2) and
844	mixed deformities (type 4) were more prevalent under Zn stress. Laboratory experiments
845	using planktonic communities produced similar results [i.e., Cu stress lead to higher
846	prevalence of deformed raphes (type 3), whereas Zn exposure resulted in a higher
847	prevalence of deformed striae (type 2)]. Arini et al. (2013) ran an experiment that
848	described the development and persistence of deformities in a population of the diatom
849	Planothidium frequentissimum within a Cd-impacted population, in terms of the viability
850	of deformed frustules, their reproduction capabilities, and the time for the population to
851	return to normal forms after the cessation of pollution. During the 21 days of Cd
852	treatment, deformities of the striae and mixed anomalies appeared first, followed by
853	alterations in central region and valve outlines. After an additional 28 days with no Cd
854	exposure, a reduction in deformed frustules was observed but deformities were still
855	present. Deformations of the striae appeared to be the most sustainable phenotype, since
856	they were still significantly higher than in reference cultures at the end of the
857	decontamination phase for the previously exposed the Cd cultures. Thus, deformities
858	remain after numerous cell divisions.
859	Another issue to consider is the low percentage of deformed frustules even under

860 stress conditions, which is the major concern in the use of deformities as a biomonitoring

861 tool. Another issue is that reports of higher incidences of deformed frustules are often 862 from field sites that are concomitantly contaminated with different toxicants. Thus, it is 863 not always possible to attribute deformities to any particular contaminant or group of 864 contaminants (Falasco et al., 2009), which ultimately leads to weak statistical relationships between deformities and the contaminants (Cattaneo et al., 2004). In situ 865 studies using diffusing substrates, such as nutrient diffusing substrates (NDSs) (Pringle, 866 867 1990) or metal diffusing substrates (MDSs) (Pandey et al., 2014), are an excellent tool to 868 assess the effect of single toxicants or combinations of toxicants on frustule abnormalities 869 in benthic diatoms.

870 **4. Conclusion and future prospective**

871 Traditional community structural metrics using diatoms (for bioassessment and ecotoxicological studies) can provide effective diagnostic information about fluvial 872 873 ecosystems. However, the extensive time (and financial) requirements, necessity of 874 expertise in diatom taxonomy and the need for statistical validation means that the use of 875 structural metrics are often not feasible at the local level, and can sometimes make the 876 use of diatom metrics unpopular. Conversely, recently developed non-taxonomical 877 metrics effectively deal with these shortcomings, as these metrics are relatively quick, 878 easy, cost-effective, reproducible and are based on globally accepted protocols. 879 Furthermore, non-taxonomic metrics allow for comparisons between different sites and 880 even geographical locations (countries, continents etc.), as they are independent of the 881 taxonomic similarity or differences. Thus, refinement of current protocols, especially 882 through incorporation of new metrics, is needed to improve bioassessment and

- 883 ecotoxicological assessment studies of diatoms and for developing efficient and effective
- 884 biomonitoring strategies.

Acknowledgements 885

- 886 This work was supported by Post-Doctoral Research Program (2015) through Incheon
- 887 National University. We are grateful to Dr. J.C. Taylor (North-West University, South
- 888 Africa) for generous gift of Pleurax.

889 **Conflict of interest**

- The authors declare that they have no conflict of interest. 890 891 References 892 Alvain, S., Quéré C.L., Bopp, L, Racault, M.F., Beaugrand, G., Dessailly, D., Buitenhuis,
- 893 E.T., 2013. Rapid climatic driven shifts of diatoms at high latitudes. Remote 894 Sens. Environ.132, 195-201. http://dx.doi.org/10.1016/j.rse.2013.01.014.
- Anderson, N.J., 2000. Diatoms, temperature and climatic change. Eur. J. Phycol. 35, 895 896 307-314. http://dx.doi.org/10.1080/09670260010001735911.
- Andrade, L.R., Marcos Farina, M., Filho, G.M.A., 2004. Effects of copper on 897 898 Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol. Environ. Saf. 58,117-899 125. http://dx.doi.org/10.1016/S0147-6513(03)00106-4.
- Arini, A., Feurtet-Mazel, A., Morin, S., Maury-Brachet, R., Coste, M., Delmas, F., 900 901 2012a. Remediation of a watershed contaminated by heavy metals: A 2-year field 902 biomonitoring of periphytic biofilms. Sci. Total Environ. 425, 242-253. 903 http://dx.doi.org/10.1016/j.scitotenv.2012.02.067.
- 904 Arini, A., Feurtet-Mazel, Maury-Brachet, R., Pokrovsky O.S., Coste, M., Delmas, F., 905 2012b. Recovery potential of periphytic biofilms translocated in artificial streams after industrial contamination (Cd and Zn). Ecotoxicology. 21,1403-906 907 1414. http://dx.doi.org/10.1007/s10646-012-0894-3.
- 908 Arini, A., Feurtet-Mazel, A., Maury-Brachet, R., Coste, M., Delmas, F., 2012c. Field 909 translocation of diatom biofilms impacted by Cd and Zn to assess 910 decontamination and community restructuring capacities. Ecol. Indic. 18, 520-
- 911 531. http://dx.doi.org/10.1016/j.ecolind.2012.01.005.
- 912 Arini, A., Durant, F., Coste, M., Delmas, F., Feurtet-Mazel, A., 2013. Cadmium 913 decontamination and reversal potential of teratological forms of the diatom 914 Planothidium frequentissimum (Bacillariophyceae) after experimental contamination. J. Phycol. 49, 361-370. http://dx.doi.org/10.1111/jpy.12044. 915
- 916 Armbrecht, L.H., Smetacek, V., Assmy, P., Klaas, C., 2014. Cell death and aggregate 917 formation in the giant diatom *Coscinodiscus wailesii* (Gran & Angst, 1931) 918
- J. Exp. Mar. Biol. Ecol. 452, 31-39.
- 919 http://dx.doi.org/10.1016/j.jembe.2013.12.004.
- Barsanti, L., Coltelli, P., Evangelista, V., Frassanito, A.M., Passarelli, V., Vesentini, N., 920 921 Gualtieri, P., 2008. The world of algae. Evangelista, V., Barsanti, L., Frassanito, A.M., Passarelli, V., Gualtieri, P. (eds.), Algal Toxins: Nature, Occurrence, Effect 922 923 and Detection. Springer Science+Business Media B.V., Netherlands, pp. 1-15.

~ ~ .

~ • •

924	B-Béres, V., Török, P., Kokai, Z., Krasznai, E.T., Töthmérész, B., Bácsi, I., 2014.
925	Ecological diatom guilds are useful but not sensitive enough as indicators of
926	extremely changing water regimes. Hydrobiologia 738, 191-204.
927	http://dx.doi.org/10.1007/s10750-014-1929-y.
928	Barral-Fraga, L., Morin, S., Rovira, M.D.M., Urrea, G., Magellan, G., Guasch, H., 2016.
929	Short-term arsenic exposure reduces diatom cell size in biofilm communities.
930	Eliviron. Sci. Pollut. K. 25, 4257-4270.
931	Beicher, J.H., 1968. Notes on the Physiology of <i>Botryococcus brauni</i> Kutzing. Archiv.
932	Mikrobiol. 61, 355-346. http://dx.doi.org/10.100//BF004096/0.
933	Berard, A., Benningholl, C., 2001. Pollution-induced community tolerance (PIC1) and
934	seasonal variations in the sensitivity of phytoplankton to atrazine in hanocosms.
933	Pérerd A Dimet E Conomiaz V Laboulanger C 2004 Procedures for determining
930	the posticide consituity of indigenous coil algory A possible bioindigeter of coil
937	contamination? Archive Environ Contam Toxicol 46 24 21
930	containination? Alcinv. Environ. Contain. Toxicol. 40, 24-51. http://dx.doi.org/10.1007/s00244.002.2147.1
939	Intp://dx.doi.org/10.100//s00244-005-214/-1.
940 041	berthon, V., Bouchez, A., Rinet, F., 2011. Using diaton me-forms and ecological guilds
941 042	South Eastern France, Hydrobiologia 673, 250, 271
942	but $\frac{1}{2}$ b
945	Rup.//dx.doi.org/10.100//s10/30-011-0/80-1.
944	microorganisms, Nat. Day, Microhiol. 2, 642, 655
945	http://dy.doi.org/10.1028/nrmicro056
940	Plance S. Bácaros E. 2010. Are histic indices consitive to river toxicents? A
947	blanco, S., Becales, E., 2010. Ale blotte indices sensitive to fiver toxicalits? A
940 040	70.18.25 http://dx.doi.org/10.1016/j.chomosphere.2010.01.050
9 4 9 050	Blanco S. Cajudo Eiguairas C. Tudasque I. Bácaras E. Hoffmann I. Ector I.
950 051	2012 Are distom diversity indices reliable monitoring metrics? Hydrobiologia
052	695 199 206 http://dv doi org/10 1007/s10750 012 1113 1
053	Bopp I 2005 Response of diatoms distribution to global warming and notential
955 05/	implications: A global model study Geophys Res Lett 32 (L19606)
955	http://dx.doi.org/10.1029/2005GL023653
956	Busse S Snoeiis P 2003 Gradient responses of diatom communities in the Bothnian
957	Sea (northern Baltic Sea) with emphasis on responses to water movement
958	Phycologia 42 451-464 http://dx doi org/10 2216/i0031-8884-42-5-451 1
959	Campbell P I Arnold D I S Brock T C M Grandy N I Heger W Heimbach F
960	Maund S I Streloke M Eds 1999 Guidance document on higher-tier aquatic
961	risk assessment for pesticides (HARAP) SETAC Press Brussels
962	Cantonati M Angeli N Virtanen L. Woital A Z. Gabriell I. Falasco E. Lavoie I.
963	Morin S. Marchetoo A. Fortin C. Smirnova S. 2014 Achnanthidium
964	<i>minutissimum</i> (Bacillariophyta) valve deformities as indicators of metal
965	enrichment in diverse widely-distributed freshwater habitats. Sci. total environ
966	75, 201-215. http://dx.doi.org/10.1016/i.scitotenv.2013.10.018.
967	Casotti, R., Mazza, S., Brunet, C., Vantrepotte, V., Ianora, A., Miralto, A., 2005. Growth
968	inhibition and toxicity of the diatomaldehyde 2-trans,4-trans-decadienal on the

969	Thalassiosira weissflogii (Baccilariophyceae). J. Phycol. 41, 7-20.
970	http://dx.doi.org/10.1111/j.1529-8817.2005.04052.x.
971	Cattaneo, A., Asioli, A., Comoli, P., Manca, M., 1998. Organisms' response in a
972	chronically polluted lake supports hypothesized link between stress and size.
973	Limnol. Oceanogr. 43, 1938-1943. http://dx.doi.org/10.4319/lo.1998.43.8.1938.
974	Cattaneo, A., Couillard, Y., Wunsam, S., Courcelles, M., 2004. Diatom taxonomic and
975	morphological changes as indicators of metal pollution and recovery in Lac
976	Dufault (Québec, Canada). J. Paleolimnol. 32, 163-175.
977	http://dx.doi.org/10.1023/B:JOPL.0000029430.78278.a5.
978	Chang, D-W., Hsieh, M-L., Chen, Y-M., Lin, T-F., Chang, J-S., 2011. Kinetics of cell
979	lysis for Microcystis aeruginosa and Nitzschia palea in the exposure to β-
980	cyclocitral. J. Hazard. Mater. 185, 1214-1220.
981	http://dx.doi.org/10.1016/j.jhazmat.2010.10.033.
982	Chessman, B.C., 1986. Diatom flora of an Australian river system: spatial patterns and
983	environmental relationships. Freshw. Biol. 16, 805-19.
984	http://dx.doi.org/10.1111/j.1365-2427.1986.tb01018.x.
985	Claesson, M.J., Wang, Q., O'Sullivan, O., Greene-Diniz, R., Cole, J.R., Ross, R.P.,
986	O'Toole, P.W., 2010. Comparison of two next-generation sequencing
987	technologies for resolving highly complex microbiota composition using tandem
988	variable 16S rRNA gene regions. Nucleic Acids Res. 38, 1-13.
989	http://dx.doi.org/10.1093/nar/gkq873.
990	Cloern, J.E., Dufford R., 2005. Phytoplankton community ecology: principles applied in
991	San Francisco Bay. Mar. Ecol. Prog. Ser. 285, 11-28.
992	http://dx.doi.org/10.3354/meps285011.
993	Colletti, P., Blinn, D.W., Pickart, A., Wagner, V.T., 1987. Influence of different densities
994	of the mayfly grazer Heptagenia criddlei on lotic diatom communities. J.N.Am.
995	Benthol. Soc. 6, 270-280. http://dx.doi.org/10.2307/1467314.
996	Coombs, J., Lauritis, J.A., Darley, W.M., Volcani, B.E., 1968. Studies on the
997	biochemistry and fine structure of silica shell formation in diatoms. Zeitschrift für
998	Pflanzenphysiologie Bd./International journal of plant physiology 59, 274-284.
999	Coquillé, N., Jan, G., Moreira, A., Morin, S., 2015. Use of diatom motility features as
1000	endpoints of metolachlor toxicity. Aquat. Toxicol. 158, 202-210.
1001	http://dx.doi.org/10.1016/j.aquatox.2014.11.021.
1002	Cox, E.J, Willis, E., Bentley, K., 2012. Integrated stimulation with experimentation is a
1003	powerful tool for understanding diatom valve morphologenesis. BioSystems 109,
1004	450-459. http://dx.doi.org/10.1016/j.biosystems.2012.05.012.
1005	d' Ippolito, G., Sardo, A., Paris, D., Vella, F.M., Adelfi, M.G., Botte, P., Gallo, C.,
1006	Fontana, A., 2015. Potential of lipid metabolism in marine diatoms for biofuel
1007	production. Biotechnol. Biofuels 8, 1-10. http://dx.doi.org/10.1186/s13068-015-
1008	0212-4.
1009	da Silva, E.F., Almeida, S.F.P., Nunes, M.L., Luís, A.T., Borg, F., Hedlund, M., de Sá,
1010	C.M., Patinha, C., Teixeira, P., 2009. Heavy metal pollution downstream the
1011	abandoned Coval da Mó mine (Portugal) and associated effects on epilithic
1012	diatom communities. Sci. Total Environ. 407, 5620-5636.
1013	http://dx.doi.org/10.1016/j.scitotenv.2009.06.047.

1014	De Jonge, M., Van de Vijver, B., Blusta, R., Lieven Bervoets, L., 2008. Responses of
1015	aquatic organisms to metal pollution in a lowland river in Flanders: A comparison
1016	of diatoms and macroinvertebrates. Sci. Total Environ. 407, 615-629.
1017	http://dx.doi.org/10.1016/j.scitotenv.2008.07.020.
1018	Debenest, T., Silvestrea, J., Coste, M., Delmas, F., Pinelli, E., 2008. Herbicide effects on
1019	freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall
1020	abnormalities. Aquat. Toxicol. 88, 88-94.
1021	http://dx.doi.org/10.1016/j.aquatox.2008.03.011.
1022	Debenest, T., Pinelli, E., Coste, M., Silvestre, J., Mazzella, N., Madigouc, C., Delmas, F.,
1023	2009. Sensitivity of freshwater periphytic diatoms to agricultural herbicides.
1024	Aquat. Toxicol. 93, 11-17, http://dx.doi.org/10.1016/j.aquatox.2009.02.014.
1025	Debenest, T., Silvestre, J., Coste, M., Pinelli, E., 2010. Effects of pesticides on
1026	freshwater diatoms In: Whitacre D.M. (ed.). Reviews of Environmental
1027	Contamination and Toxicology, Springer, Berlin, pp 87-103.
1028	http://dx.doi.org/10.1007/978-1-4419-1352-4 2.
1029	Debenest, T., Silvestrea, J., Pinelli, E., 2013, Diatoms in ecotoxicology. In: Férard, J-F.,
1030	Blaise, C. (Eds.), Encylopedia of aquatic ecotoxicology, Springer, Netherlands,
1031	pp. 295-304.
1032	DeNicola, D.M., 2000. A review of diatoms found in highly acidic environments.
1033	Hydrobiologia 433, 111-122, http://dx.doi.org/10.1023/A:1004066620172.
1034	Deniseger, J., Austin, A., Lucey, W.P., 1986, Periphyton communities in a pristine
1035	mountain stream above and below heavy metal mining operations. Freshw, Biol.
1036	16, 209-218 http://dx doi org/10.1111/i 1365-2427 1986 tb00965 x
1037	Desai, S.R., Verlecar, X.N., Goswami, N.U., 2006. Genotoxicity of cadmium in marine
1038	diatom <i>Chaetoceros tenuissimus</i> using the alkaline Comet assay. Ecotoxicology
1039	15, 359-363, http://dx.doi.org/10.1007/s10646-006-0076-2.
1040	
1041	Dickman, M.D., 1998. Benthic marine diatom deformities associated with contaminated
1042	sediments in Hong Kong, Environ, Int. 24, 749-759.
1043	http://dx.doi.org/10.1016/S0160-4120(98)00060-9.
1044	Dorigo, U., Bourrain, X., Bérard, A., Leboulanger, C., 2004. Seasonal changes in the
1045	sensitivity of river microalgae to atrazine and isoproturon along a contamination
1046	gradient. Sci. Total Environ. 318, 101-114. http://dx.doi.org/10.1016/S0048-
1047	9697(03)00398-X.
1048	Drum, R.W., Hopkin, J.T., 1966. Diatom locomotion: an explanation. Protoplasma 62, 1-
1049	33. http://dx.doi.org/10.1007/BF01254629.
1050	Duong T.T., Morin S., Herlory O., Feurtet-Mazel A., Coste M., Boudou A., 2008.
1051	Seasonal effects of cadmium accumulation in periphytic diatom communities of
1052	freshwater biofilms. Aquat. Toxicol. 90, 19-28.
1053	http://dx.doi.org/10.1016/j.aquatox.2008.07.012
1054	Duong, T.T., Morin, S., Coste, M., Olivier Herlory, O., Feurtet-Mazel, A., Boudou, A.,
1055	2010. Experimental toxicity and bioaccumulation of cadmium in freshwater
1056	periphytic diatoms in relation with biofilm maturity. Sci. Total Environ. 408.
1057	552-562. http://dx.doi.org/10.1016/j.scitotenv.2009.10.015.
1058	Duong, T.T., Coste, M., Feurtet-Mazel, A., Dang, D. K., Ho, C.T., Le, T.P.O., 2012.
1059	Responses and structural recovery of periphytic diatom communities after short-

1060	term disturbance in some rivers (Hanoi, Vietnam). J. Appl. Phycol. 24, 1053-
1061	1065. http://dx.doi.org/10.100//s10811-011-9/33-9.
1062	Dziengo-Czaja, M., Koss, J., Matuszak, A., 2008. Teratological forms of diatoms as
1063	indicators of water pollution in the western part of Puck Bay southern Baltic Sea.
1064	Oceanol. Hydrobiol. St. 37, 119-132. http://dx.doi.org/10.2478/v10009-007-0042-
1065	
1066	Elias, C.M., Calapez, A.R., Almeida, S.F.P., Feio, M.J., 2015. From perennial to
1067	temporal streams: an extreme drought as a driving force of freshwater
1068	communities' traits. Marine and Freshwater Research. 66, 469-480.
1069	http://dx.doi.org/10.1071/MF13312.
1070	Evans, J.H., 1960. Further investigations of the algae of pond margins. Hydrobiologia 15,
1071	384-394. http://dx.doi.org/10.1007/BF00046420.
1072	Falasco, E., Bona, F., Badino, G., Hoffmann, L., Ector, L., 2009. Diatom teratological
1073	forms and environmental alterations: a review. Hydrobiologia 623, 1-35.
1074	http://dx.doi.org/10.1007/s10750-008-9687-3.
1075	Finkel, Z.V., Vaillancourt, C-J., Irwin, A.J., Reavie, E.D., Smol, J.P., 2009.
1076	Environmental control of diatom community size structure varies across aquatic
1077	ecosystems. Proc. R. Soc. Lond. B 276, 1627-1634.
1078	http://dx.doi.org/10.1098/rspb.2008.1610.
1079	Frada, M.J., Burrows, E. H., Wyman, K. D., Falkowski, P.G., 2013. Quantum
1080	requirements for growth and fatty acid biosynthesis in the marine diatom
1081	Phaeodactylum tricornutum (Bacillariophyceae) in nitrogen replete and limited
1082	conditions. J. Phycol. 49, 381-388. http://dx.doi.org/10.1111/jpy.12046.
1083	Franklin, D.J., Brussaard, C.P.D., Berges, J. A., 2006. What is the role and nature of
1084	programmed cell death in phytoplankton ecology? Eur. J.Phycol. 41, 1-14.
1085	http://dx.doi.org/10.1080/09670260500505433.
1086	Gatidou, G., Thomaidis, N.S., 2007. Evaluation of single and joint toxic effects of two
1087	antifouling biocides, their main metabolites and copper using phytoplankton
1088	bioassays. Aquat. Toxicol. 85, 184-191.
1089	http://dx.doi.org/10.1016/j.aquatox.2007.09.002.
1090	Gautam, S., Pandey, L.K., Vinayak, V., Arya, A., 2017. Morphological and physiological
1091	alterations in the diatom Gomphonema pseudoaugur due to heavy metal stress.
1092	Ecol. Indic. 72, 67-76. http://dx.doi.org/10.1016/j.ecolind.2016.08.002.
1093	Genter, R.B., Lehman, R.M., 2000. Metal toxicity inferred from algal population density,
1094	heterotrophic substrate use, and fatty acid profile in a small stream. Environ.
1095	Toxicol. Chem.19, 869-878. http://dx.doi.org/10.1002/etc.5620190413.
1096	Ghosh, M., Gaur, J.P., 1998. Current velocity and the establishment of stream algal
1097	periphyton communities. Aquat. Bot. 60, 1-10. http://dx.doi.org/10.1016/S0304-
1098	3770(97)00073-9.
1099	Giddings, J.M., Brock, T.C.M., Heger, W., Heimbach, F., Maund, S.J., Norman, S.M.,
1100	Ratte, H.T., Schäfers, C., Streloke, M., Eds. 2002. Community-Level Aquatic
1101	System Studies—Interpretation Criteria (CLASSIC). SETAC Press, Pensacola,
1102	FL.
1103	Gillett, N., Pan, Y., Parker, C., 2009. Should only live diatoms be used in the
1104	bioassessment of small mountain streams? Hydrobiologia 620, 135-147.

1105 http://dx.doi.org/10.1007/s10750-008-9624-5.

1106	Gillett, N.D., Pan, Y., Manoylov, K.M., Stevenson, R.J., 2011. The role of live diatoms in
1107	bioassessment: a large-scale study of Western US streams. Hydrobiologia 665,
1108	79-92. http://dx.doi.org/10.1007/s10750-011-0606-7.
1109	Gold, C., Feurtet-Mazel, A., Coste, M., Boudou, A., 2002. Field transfer of periphytic
1110	diatom communities to assess short-term structural effects of metals (Cd, Zn) in
1111	rivers. Water Res. 36, 3654-3664, http://dx.doi.org/10.1016/S0043-
1112	1354(02)00051-9.
1113	Gold, C., Feurtet-Mazel, A., Coste, M., Boudou, A., 2003a, Effects of cadmium stress on
1114	periphytic diatom communities in indoor artificial streams. Freshw. Biol. 48, 316-
1115	328. http://dx.doi.org/10.1046/j.1365-2427.2003.00980.x.
1116	Gold, C., Feurtet-Mazel, A., Coste, M., Boudou, A., 2003b. Impacts of Cd and Zn on the
1117	Development of periphytic diatom communities in artificial streams located
1118	along a river pollution gradient. Arch. Environ. Contam. Toxicol. 44, 189-197
1119	http://dx.doi.org/10.1007/s00244-002-2024-3.
1120	Gómez, N., Licursi, M., 2003, Abnormal forms in <i>Pinnularia gibba</i>
1121	(Bacillariophyceae) in a polluted lowland stream from Argentina. Nova
1122	Hedwigia 77, 389-398, http://dx.doi.org/10.1127/0029-5035/2003/0077-0389.
1123	Gottschalk, S., Kahlert, M., 2012, Shifts in taxonomical and guild composition of littoral
1124	diatom assemblages along environmental gradients. Hydrobiologia 694, 41-56.
1125	http://dx.doi.org/10.1007/s10750-012-1128-7.
1126	Guasch, H., Ivorra, N., Lehmann, V., Paulsson, M., Real, M., Sabater, S., 1998.
1127	Community composition and sensitivity of periphyton to atrazine in flowing
1128	waters: the role of environmental factors. J. Appl. Phycol. 10, 203-213.
1129	http://dx.doi.org/10.1023/A:1008035212208.
1130	Guasch, H., Ricart, M., López-Doval, J., Bonnineau, C., Proia, L., Morin, S., Muñoz, I.,
1131	Romaní, A.M., Sabater, S., 2016. Influence of grazing on triclosan toxicity to
1132	stream periphyton. Freshwater Biol. 16, 2002-2012.
1133	http://dx.doi.org/10.1111/fwb.12797.
1134	Guerra, L.T., Levitan, O., Frada, M.J., Sun, J.S., Falkowski, P.G., Dismukes, G.C., 2013.
1135	Regulatory branch points affecting protein and lipid biosynthesis in the diatom
1136	Phaeodactylum tricornutum. Biomass Bioenerg. 59, 306-315.
1137	http://dx.doi.org/10.1016/j.biombioe.2013.1010.1007.
1138	Hasle, G.R., Syversten, E.E., 1996. Marine diatoms. In: Tomas, C.R., (ed), Identifying
1139	marine diatoms and dinoflagellates. Academic Press, California pp 5-385.
1140	Hering, D., Johnson, R.K., Kramm, S., 2006. Assessment of European streams with
1141	diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based
1142	analysis of organism response due to stress. Freshw. Biol. 51, 1757-1785.
1143	heterotrophic substrate use, and fatty acid profile in a small stream. Environ.
1144	Toxicol. Chem.19, 869–878. http://dx.doi.org/10.1111/j.1365-2427.2006.01610.x.
1145	Hildebrand, M., 2008. Diatoms, biomineralization processes, and genomics. Chem. Rev.
1146	108, 4855-4874. http://dx.doi.org/10.1021/cr078253z.
1147	Hildebrand, M., Davis, A.K., Smith, S.R., Traller, J.C., Abbriano, R., 2012. The place of
1148	diatoms in the biofuels industry. Biofuels. 3, 221-240.
1149	http://dx.doi.org/0.4155/BFS.11.157.
1150	Hill, B.H., Williamgham, W.T., Parrish, L.P., McFarland, B.H., 2000. Periphyton
1151	community responses to elevated metal concentrations in a Rocky Mountain

1152	stream. Hydrobiologia 428, 161-169.
1153	http://dx.doi.org/10.1023/A:1004028318542.
1154	Hillebrand, H., Durselen, C., Kirschtel, D., Pollingher, U., Zohary, T., 1999. Biovolume
1155	calculation for pelagic and benthic microalgae. J. Phycol. 35, 403-424.
1156	http://dx.doi.org/10.1046/j.1529-8817.1999.3520403.x.
1157	Hirst, H., Ingrid, J.U., Jüttner, I., Ormerod, S.J., 2002. Comparing the responses of
1158	diatoms and macroinvertebrates to metals in upland streams of Wales and
1159	Cornwall. Freshw. Biol. 47, 1752-1765. http://dx.doi.org/10.1046/j.1365-
1160	2427.2002.00904.x.
1161	Janssen, M., Bathke, L., Marquardt, J., Krumbein, W.E., Rhiel, E., 2001. Changes in the
1162	photosynthetic apparatus of diatoms in response to low and high light intensities.
1163	Int. Microbiol. 4, 27-33. http://dx.doi.org/10.1007/s101230100005.
1164	
1165	Jiang, Y.L., 2012. Photosynthetic performance, lipid production and biomass
1166	composition in response to nitrogen limitation in marine microalgae. Plant
1167	Physiol. Biochem. 54, 70-77. http://dx.doi.org/10.1016/j.plaphy.2012.02.012.
1168	Joux-Arab, L., Berthet, B., Robert, J.M., 2000. Do toxicity and accumulation of copper
1169	change during size reduction in the marine pennate diatom <i>Haslea ostrearia</i> ?
1170	Marine Biol. 136, 323-330. http://dx.doi.org/10.1007/s002270050690.
1171	Julius, M.L., Theriot, E.C., 2007. The diatoms: a primer. In: Smol J.P., and Stoermer
1172	E.F., (2nd Eds.). The diatoms: applications for the environmental and earth
1173	sciences. Cambridge university press. London, pp. 8-22.
1174	https://doi.org/10.1017/CBO9780511763175.003
1175	Jüttner, I., Rothfritz, H., Omerod, S.J., 1996, Diatoms as indicators of river water quality
1176	in the Nepalese Middle Hills with consideration of the effects of habitat-specific
1177	sampling Freshw Biol 36 475-86 http://dx doi.org/10.1046/i.1365-
1178	2427 1996 00101 x
1179	Kelly, M.G., 1998. Use of the trophic diatom index to eutrophication in rivers. Water
1180	Res. 32, 236-242. http://dx.doi.org/10.1016/S0043-1354(97)00157-7.
1181	Kelly, M.G., Wilson, S., 2004. Effect of phosphorus stripping on water chemistry and
1182	diatom ecology in an eastern lowland river. Water res. 38,1559-1567.
1183	http://dx.doi.org/10.1016/j.watres.2003.12.022.
1184	Kermarrec, L., Franc, A., Rimet, F., Chaumeil, P., Humbert, J. F., Bouchez, A., 2013.
1185	Next-generation sequencing to inventory taxonomic diversity in eukaryotic
1186	communities: a test for freshwater diatoms. Mol. Ecol. Resour.13, 607-619.
1187	http://dx.doi.org/10.1111/1755-0998.12105.
1188	Kermarrec, L., Franc, A., Rimet, F., Chaumeil, P., Frigerio, J.M., Humbert, J. F.,
1189	Bouchez, A., 2014. A next-generation sequencing approach to river
1190	biomonitoring using benthic diatoms. Freshw. Sci. 33, 349-363.
1191	http://dx.doi.org/10.1086/675079.
1192	Kerrigan, E.A., Irwin, A.J., Finkel, Z.V., 2015. Community- and population-level
1193	changes in diatom size structure in a subarctic lake over the last two centuries.
1194	PeerJ 3:e1074; http://dx.doi.org/10.7717/peerj.1074.
1195	Kilham, S.S., Theriot, E.C., Fritz, S.C., 1996. Linking planktonic diatoms and climate
1196	change in the large lakes of the Yellowstone ecosystem using resource theory.
1197	Limnol. Oceanogr. 41, 1052-1062. http://dx.doi.org/10.4319/lo.1996.41.5.1052.

1198	Knauer, K., Maise, S., Thoma, G., Hommen, U., Gonzalez-Valero, J., 2005. Long-term
1199	variability of zooplankton populations in aquatic mesocosms. Environ. Toxicol.
1200	Chem. 24, 1182–1189. http://dx.doi.org/10.1897/04-010R.1.
1201	Knauer, K., Hommen, U., 2012. Sensitivity, variability, and recovery of functional and
1202	structural endpoints of an aquatic community exposed to herbicides.
1203	Ecotoxicol. Environ. Saf. 78, 178-183.
1204	http://dx.doi.org/10.1016/j.ecoenv.2011.11.019.
1205	Kociolek, J.P., Stoermer, E.F., 2010. Variation and polymorphism in diatoms: the triple
1206	helix of development, genetics and environment. A review of the literature. Vie et
1207	milieu - life and environment. 60, 75-87.
1208	Koester, J.A., Swalwell, J.E., Dassow, P. V., Armbrust, E.V., 2010. Genome size
1209	differentiates co-occurring populations of the planktonic diatom Ditylum
1210	brightwellii (Bacillariophyceae). BMC Evol.
1211	Biol. 10:1. http://dx.doi.org/10.1186/1471-2148-10-1.
1212	Kraufvelin, P., 1998. Model ecosystem replicability challenged by the "soft" reality of a
1213	hard bottom mesocosm. J. Exp. Mar. Biol. Ecol. 222, 247-267.
1214	http://dx.doi.org/10.1016/S0022-0981(97)00143-3.
1215	Laney, S.R. Olson, R.J. Sosik, H.M., 2012. Diatoms favor their younger daughters.
1216	Limnol. Oceanograp. 57, 1572-1578. http://dx.doi.org/10.4319/lo.2012.57.5.1572.
1217	Larras, F., Montuelle, B., Bouchez, A., 2013. Assessment of toxicity thresholds in aquatic
1218	environments: Does benthic growth of diatoms affect their exposure and
1219	sensitivity to herbicides? Sci. Total Environ. 463-464, 469-477.
1220	http://dx.doi.org/10.1016/j.scitotenv.2013.06.063.
1221	Larras, F., Keck, F., Montuelle, B., Rimet, F., Bouchez, A., 2014a. Linking diatom
1222	sensitivity to herbicides to phylogeny: A step forward for biomonitoring?
1223	Environ. Sci. Technol. 48, 1921-1930.
1224	http://dx.doi.org/doi.org/10.1021/es4045105.
1225	Larras, F., Montuelle, B., Rimet, F., Chévre, N., Bouchez, A., 2014b. Seasonal shift in
1226	the sensitivity of a natural benthic microalgal community to a herbicide mixture:
1227	impact on the protective level of thresholds derived from species sensitivity
1228	distributions. Ecotoxicology 23, 1109-1123. http://dx.doi.org/10.1007/s10646-
1229	014-1254-2.
1230	Lavoie, I., Vincent, W.F., Pienitz, R., Painchaud, J., 2004. Benthic algae as
1231	bioindicators of agricultural pollution in the streams and rivers of southern
1232	Québec (Canada). Aquat. Ecosyst. Health 7, 43-58.
1233	http://dx.doi.org/10.1080/14634980490281236.
1234	Lavoie, I., Campeau, S., Fallu, M., Dillon, P.J., 2006. Diatoms and biomonitoring: should
1235	cell size be accounted for? Hydrobiologia. 573, 1-16.
1236	http://dx.doi.org/10.1007/s10750-006-0223-z.
1237	Lavoie, I., Lavoie, M., Fortin, C., 2012. A mine of information: benthic algal
1238	communities as biomonitors of metal contamination from abandoned tailings. Sci.
1239	Total Environ. 425, 231-241. http://dx.doi.org/10.1016/j.scitotenv.2012.02.057.
1240	Leguay, S., Lavoie, I., Levy, J.L., Fortin, C., 2016. Using biofilms for monitoring metal
1241	contamination in lotic ecosystems: the protective effects of hardness and pH on
1242	metal bioaccumulation. Environ. Toxicol. Chem. 35,1489-1501.
1042	http://dy.doi.org/10.1002/sta.2202

1243 http://dx.doi.org/10.1002/etc.3292.

Lelong, A., Bucciarelli, E., Hégaret, H., Soudant, P., 2013. Iron and copper limitations
differently affect growth rates and photosynthetic and physiological parameters of
the marine diatom Pseudo-nitzschia delicatissima. Limnol. Oceanogr. 58, 613-
623. http://dx.doi.org/10.4319/lo.2013.58.2.0613.
Levy, J., Stauber, J.L., Jolley, D.F., 2007. Sensitivity of marine microalgae to copper:
The effect of biotic factors on copper adsorption and toxicity. Sci. Total Environ.
387, 141-154. http://dx.doi.org/10.1016/j.scitotenv.2007.07.016.
Levy, J., Angel, B., Stauber, J.L., Poon, W.L., Simpson, S.L., Cheng, S., Jolley, D.
F., 2008. Uptake and internalisation of copper by three marine microalgae:
comparison of copper-sensitive and copper-tolerant species. Aquat. Toxicol.
89, 82-93. http://dx.doi.org/10.1016/j.aquatox.2008.06.003.
Liang, Y., Osada, K., Sunaga, Y., Yoshino, T., Bowler, C., Tanaka, T., 2015. Dynamic
oil body generation in the marine oleaginous diatom Fistulifera solaris in
response to nutrient limitation as revealed by morphological and lipidomic
analysis. Algal Res.12, 359-367. http://dx.doi.org/10.1016/j.algal.2015.09.017.
Licursi, M. Gómez, N., 2013. Short-term toxicity of hexavalent-chromium to
epipsammic diatoms of a microtidal estuary (Río de la Plata): Responses from the
individual cell to the community structure. Aquat. Toxicol. 134-135, 82-91.
http://dx.doi.org/10.1016/j.aquatox.2013.03.007.
Litchman, E., Klausmeier, C.A., Yoshiyama, K., 2008. Contrasting size evolution in
marine and freshwater diatoms. Proc. Natl. Acad. Sci. 106, 2665-2670.
http://dx.doi.org/10.1073/pnas.0810891106.
Liu, Z.Y., Wang, G.C., Zhou, B.C, 2008. Effect of iron on growth and lipid accumulation
in Chlorella vulgaris. Bioresour. Technol. 99, 4717-4722.
http://dx.doi.org/10.1016/j.biortech.2007.09.073.
Lombardi, A.T., Vieira, A.A.H., 1999. Lead- and copper-complexing extracellular
ligands released by Kirchneriella aperta (Chlorococcales, Chlorophyta).
Phycologia 38, 283-288. http://dx.doi.org/10.2216/i0031-8884-38-4-283.1.
Lombardi, A.T., Vieira, A.A.H., 2000. Copper complexation by Cyanophyta and
Chlorophyta exudates. Phycologia 39, 118-125. http://dx.doi.org/10.2216/i0031-
8884-39-2-118.1.
Lommer, M., Specht, M., Roy, A-S., Kraemer, L., Andreson, R., Gutowska, M.A., Wolf,
J., Bergner, S.V., Schilhabel, M.B., Klostermeier, U.C., Beiko, R.G., Rosenstiel,
P., Hippler, M., LaRoche, J., 2012. Genome and low-iron response of an oceanic
diatom adapted to chronic iron limitation. Genome Biol. 13, 1-20.
diatom adapted to chronic iron limitation. Genome Biol. 13, 1-20. http://dx.doi.org/10.1186/gb-2012-13-7-r66.
diatom adapted to chronic iron limitation. Genome Biol. 13, 1-20. http://dx.doi.org/10.1186/gb-2012-13-7-r66. Luís, A.T., Teixeira, P., Almeida, S.F.P., Ector, L., Matos, J.X., Ferreira da Silva, E.A.
 diatom adapted to chronic iron limitation. Genome Biol. 13, 1-20. http://dx.doi.org/10.1186/gb-2012-13-7-r66. Luís, A.T., Teixeira, P., Almeida, S.F.P., Ector, L., Matos, J.X., Ferreira da Silva, E.A. 2011. Environmental impact of mining activities in the Lousal area (Portugal):
 diatom adapted to chronic iron limitation. Genome Biol. 13, 1-20. http://dx.doi.org/10.1186/gb-2012-13-7-r66. Luís, A.T., Teixeira, P., Almeida, S.F.P., Ector, L., Matos, J.X., Ferreira da Silva, E.A. 2011. Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments
 diatom adapted to chronic iron limitation. Genome Biol. 13, 1-20. http://dx.doi.org/10.1186/gb-2012-13-7-r66. Luís, A.T., Teixeira, P., Almeida, S.F.P., Ector, L., Matos, J.X., Ferreira da Silva, E.A. 2011. Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Sci. Total Environ. 409, 4312-4325.
 diatom adapted to chronic iron limitation. Genome Biol. 13, 1-20. http://dx.doi.org/10.1186/gb-2012-13-7-r66. Luís, A.T., Teixeira, P., Almeida, S.F.P., Ector, L., Matos, J.X., Ferreira da Silva, E.A. 2011. Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Sci. Total Environ. 409, 4312-4325. http://dx.doi.org/10.1016/j.scitotenv.2011.06.052.
 diatom adapted to chronic iron limitation. Genome Biol. 13, 1-20. http://dx.doi.org/10.1186/gb-2012-13-7-r66. Luís, A.T., Teixeira, P., Almeida, S.F.P., Ector, L., Matos, J.X., Ferreira da Silva, E.A. 2011. Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Sci. Total Environ. 409, 4312-4325. http://dx.doi.org/10.1016/j.scitotenv.2011.06.052. Ma, J., Xu, L., Wang, S., Zheng, R., Jin, S., Huang, S., Huang, Y., 2002. Toxicity of 40
 diatom adapted to chronic iron limitation. Genome Biol. 13, 1-20. http://dx.doi.org/10.1186/gb-2012-13-7-r66. Luís, A.T., Teixeira, P., Almeida, S.F.P., Ector, L., Matos, J.X., Ferreira da Silva, E.A. 2011. Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Sci. Total Environ. 409, 4312-4325. http://dx.doi.org/10.1016/j.scitotenv.2011.06.052. Ma, J., Xu, L., Wang, S., Zheng, R., Jin, S., Huang, S., Huang, Y., 2002. Toxicity of 40 herbicides to the green algae <i>Chlorella vulgaris</i>. Ecotoxicol. Environ. Saf.

1288	Mackay A.W., 2007. The paleoclimatology of Lake Baikal: A diatom synthesis and
1289	prospectus. Earth-Sci. Rev. 82, 181–215.
1290	http://dx.doi.org/10.1016/j.earscirev.2007.03.002.
1291	Mann, D.G., Droop, S.J.M., 1996. Biodiversity, biogeography and conservation of
1292	diatoms. Hydrobiologia 336, 19-32. http://dx.doi.org/10.1007/BF00010816.
1293	Manoylov, K.M., 2014. Taxonomic identification of algae (morphological and
1294	molecular): species concepts, methodologies, and their implications for ecological
1295	bioassessment. J. Phycol. 50, 409-424. http://dx.doi.org/10.1111/jpy.12183.
1296	McCormick, P.V., Cairns. J, Jr., 1994. Algae as indicators of environmental change. J.
1297	Appl. Phycol. 6, 509-526. http://dx.doi.org/10.1007/BF02182405.
1298	Medley, C.L., Clements, W.H., 1998. Responses of diatom communities to heavy metals
1299	in streams: the influence of longitudinal variation. Ecol. Appl. 8, 631-644.
1300	http://dx.doi.org/10.1890/1051-0761(1998)008[0631:RODCTH]2.0.CO;2.
1301	Miklasz, K.A., Denny, M.W., 2010. Diatom sinking speeds: Improved predictions and
1302	insight from a modified Stokes' law. Limnol. Oceanogr. 55, 2513–2525.
1303	http://dx.doi.org/10.4319/lo.2010.55.6.2513.
1304	Montagnes, D.J.S., Franklin, D.J., 2001. Effect of temperature on diatom volume, growth
1305	rate, and carbon and nitrogen content: Reconsidering some paradigms. Limnol.
1306	Oceanogr., 46, 2001, 2008-2018.
1307	Morales, E.A., 2001. Morphological studies in selected fragilarioid diatoms
1308	(Bacillariophyceae) from Connecticut waters (U.S.A.). Proceedings of the
1309	Academy of Natural Sciences of Philadelphia. 151, 105-120.
1310	http://dx.doi.org/10.1635/0097-3157(2001)151[0105:MSISFD]2.0.CO;2.
1311	Morin, S., Costae, M., 2006. Metal-induced shifts in the morphology of diatoms from the
1312	Riou Mort and Riou Viou streams (South West France). In: Acs, E., Kiss, K.T.,
1313	Padiska, J., Szabo, K. (Eds.). Use of algae for monitoring rivers VI. Hungarian
1314	Algological Society, God, Hungary, Balatonfured, pp. 91-106.
1315	Morin, S., Coste, M., Hamilton, P.B., 2008c. Scanning electron microscopy observations
1316	of small pinnate diatoms exposed to high cadmium concentrations. J. Phycol. 44,
1317	1512-1518. http://dx.doi.org/10.1111/j.1529-8817.2008.00587.x.
1318	Morin, S., Duong, T.T., Dabrin, A., Coynel, A., Herlory, O., Baudrimont, M., Delmas, F.,
1319	Durrieu, G., Schäfer, J., Winterton, P., Blanc, G., Coste, M., 2008a. Long-term
1320	survey of heavy-metal pollution, biofilm contamination and diatom community
1321	structure in the Riou Mort watershed, South-West France. Environ. Pollut. 151,
1322	532-542. http://dx.doi.org/10.1016/j.envpol.2007.04.023.
1323	Morin, S., Duong, I.I., Herlory, O., Feurtet-Mazel, A., Coste, M., 2008b. Cadmium
1324	toxicity and bioaccumulation in freshwater biofilms. Arch. Environ. Contam.
1325	10x1col. 54, 1/3-186. http://dx.doi.org/10.100//s00244-00/-9022-4.
1320	Morin, S., Bottin, M., Mazzella, N., Macary, F., Delmas, F., Winterton, P., Coste, M.,
1327	2009. Linking diatom community structure to pesticide input as evaluated through
1328	a spatial contamination potential (Phytopixal): A case study in the Neste river
1329	system (South-west France). Aquat. 10x1col. 94, 28-39.
1330	nup://dx.doi.org/10.1010/j.aquatox.2009.05.012.
1331	Morin, S., resce, S., 111, A., Coste, M., Montuelle, B., 2010. Recovery potential of
1552	periphytic communities in a river impacted by a vineyard watershed. Ecol. Indic.

1333 10, 419-426. http://dx.doi.org/10.1016/j.ecolind.2009.07.008.

1334	Morin, S., Berta Bonet, B., Corcoll, N., Guasch, H., Bottin, M., Coste, M., 2015.
1335	Cumulative stressors trigger increased vulnerability of diatom communities to
1336	additional disturbances. Microb. Ecol. 70, 585-595.
1337	http://dx.doi.org/10.1007/s00248-015-0602-y.
1338	Morin, S., Cordonier, A., Lavoie, I., Arini, A., Blanco, S., Duong, T.T., Tornés, E.,
1339	Bonet, B., Corcoll, N., Faggiano, L., Laviale, M., Pérès, F., Becares, E., Coste,
1340	M., Feurtet-Mazel, A., Fortin, C., Guasch, H., Sabater, S., 2012. Consistency in
1341	diatom response to metal-contaminated environments. In: Guasch, H., Ginebreda,
1342	A., Geiszinger, A. (eds.) Emerging and Priority Pollutants in Rivers. Springer-
1343	Verlag, Berlin, pp. 117-146.
1344	Morin, S., Gómez, N., Tornés, E., Licursi, M., Rosebery, J., 2016. Benthic diatom
1345	monitoring and assessment of freshwater environments: standard methods and
1346	future challenges. In: Romaní, A.M., Guasch, H., Balaguer, M.D. (Eds.), Aquatic
1347	biofilms: Ecology, water quality and water treatment. Caister Academic Press,
1348	U.K. pp.111-124. https://doi.org/10.21775/9781910190173.06.
1349	Nunes, M.L., da Silva, E. F., Almeida, S.F.P., 2003. Assessment of water quality in the
1350	Caima and Mau River basins (Portugal) using geochemical and biological Indices.
1351	Water, Air, and Soil Pollut. 149, 227-250.
1352	https://doi.org/10.1023/A:1025636106890.
1353	Olson, R.J, Watras, C., Chisholm, S.W., 1986. Patterns of individual cell growth in
1354	arine centric diatoms. J. Gen. Microbiol.132, 1197-1204.
1355	Palmer, C.M., 1969. A composite rating of algae tolerating organic pollution. J. Phycol.
1356	5, 78-82. https://doi.org/10.1111/j.1529-8817.1969.tb02581.x.
1357	Pandey, L.K., Kumar, D., Yadav, A., Rai, J., Gaur, J.P., 2014. Morphological
1358	abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal
1359	pollution in a river. Ecol. Indic. 36, 272-279.
1360	http://dx.doi.org/10.1016/j.ecolind.2013.08.002.
1361	Pandey, L.K., Han, T., Gaur, J.P., 2015. Response of a phytoplanktonic assemblage to
1362	copper and zinc enrichment in microcosm. Ecotoxicology. 24, 573-582.
1363	https://doi.org/10.1007/s10646-014-1405-5.
1364	Pandey, L.K., Bergey, E.A., 2016. Exploring the status of motility, lipid bodies,
1365	deformities and size reduction in periphytic diatom community from chronically
1366	metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. Sci. Total Environ.
1367	550, 372-381. http://dx.doi.org/10.1016/j.scitotenv.2015.11.151.
1368	Pandey, L.K., Ojha, K.K., Singh, P.K., Singh, C.S., Dwivedi, S., Bergey, E.A., 2016.
1369	Diatoms image database of India (DIDI): A research tool. Environ. Technol. Inn.
1370	5, 148-160. http://dx.doi.org/10.1016/j.eti.2016.02.001.
1371	Passy, S.I., 2007. Diatom ecological guilds display distinct and predictable behavior
1372	along nutrient and disturbance gradients in running waters. Aquat. Bot. 86,
1373	171-178. http://dx.doi.org/10.1016/j.aquabot.2006.09.018.
1374	Passy, S.I., Larson, C.A., 2011. Succession in stream biofilms is an environmentally
1375	driven gradient of stress tolerance. Microb. Ecol. 62, 414-424.
1376	Peramuna, A., Summers, M.L., 2014. Composition and occurrence of lipid droplets in the
1377	cyanobacterium Nostoc punctiforme. Arch. Microbiol. 196, 881-890.
1378	http://dx.doi.org/10.1007/s00203-014-1027-6.

1379	Pérès, F., Florin, D., Grollier, T., Feurtet-Mazel, A., Coste, M., Ribeyre, F., Ricard, M.,
1380	Boudou, A., 1996. Effects of the phenylurea herbicide isoproturon on periphytic
1381	diatom communities in freshwater indoor microcosms. Environ. Pollut. 94,141-
1382	152. http://dx.doi.org/10.1016/S0269-7491(96)00080-2.
1383	
1384	Podola, B., Melkonian, M., 2005. Selective real-time herbicide monitoring by an array
1385	chip biosensor employing diverse microalgae. J. Appl. Phycol. 17, 261-271.
1386	http://dx.doi.org/10.1007/s10811-005-4945-5.
1387	Potapova, M.G., Charles, D.F., Ponder, K.C., Winter, D.M., 2004. Quantifying species
1388	indicator values for trophic diatom indices: a comparison of approaches.
1389	Hydrobiologia 517, 25-41.
1390	http://dx.doi.org/10.1023/B:HYDR.0000027335.73651.ea.
1391	Potapova, M., Charles, D.F., 2005. Choice of substrate in algae-based water-quality
1392	assessment. J. N. Am. Benthol. Soc. 24, 415-427. http://dx.doi.org/10.1899/03-
1393	111.1.
1394	Potapova, M., Charles, D.F., 2007. Diatom metrics for monitoring eutrophication in
1395	rivers of the United States. 7, 48-70.
1396	http://dx.doi.org/10.1016/j.ecolind.2005.10.001.
1397	Potapova, M., Hamilton, P.B., 2007. Morphological and ecological variation within the
1398	Achnanthidium minutissimum (Bacillariophyceae) species complex. J. Phycol.
1399	43, 561-575.10.1111/j.1529-8817.2007.00332.x.
1400	Pringle, C.M., 1990. Nutrient Spatial Heterogeneity: Effects on community structure,
1401	physiognomy, and diversity of stream algae. Ecology 71, 905-920.
1402	http://www.jstor.org/stable/1937362.
1403	Radchenko, I. G., Il'yash, L. V., 2006. Growth and photosynthetic activity of diatom
1404	Thalassiosira weissflogii at decreasing salinity. Biol. Bull. 33, 242-247.
1405	http://dx.doi.org/10.1134/S106235900603006X.
1406	Ramachandra, T.V., Mahapatra, D.M., Karthick, B., Gordon, R., 2009. Milking diatoms
1407	for sustainable energy: biochemical engineering versus gasoline-secreting diatom
1408	solar panels. Ind. Eng. Chem. Res. 48, 8769-8788.
1409	http://dx.doi.org/10.1021/ie900044j.
1410	Reavie, E.D., Barbiero, R.P., 2013. Recent changes in abundance and cell size of pelagic
1411	diatoms in the North American Great Lakes. Phytotaxa 127, 150-162.
1412	http://dx.doi.org/10.11646/phytotaxa.127.1.15.
1413	Renzi, M., Roselli, L., Giovani, A., Focardi, S.E., Basset, A., 2014. Early warning tools
1414	for ecotoxicity assessment based on <i>Phaeodactylum tricornutum</i> . Ecotoxicology.
1415	23, 1055-1072. http://dx.doi.org/10.1007/s10646-014-1249-z.
1416	Ricart, M., Barceló, D., Geiszinger, A., Guasch, H., de Alda, M.L., Romaní, A.M.,
1417	Vidal, G., Villagrasa, M., Sabater, S., 2009. Effects of low concentrations of the
1418	phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76,
1419	1392-1401. http://dx.doi.org/10.1016/j.chemosphere.2009.06.017.
1420	Ricciardi, F., Bonnineau, C., Faggiano, L., Geiszinger, A., Guasch, H., Lopez-Doval, J.,
1421	Muñoz, I., Proia, L., Ricart, M., Romaní, A., Sabater, S., 2009. Is chemical
1422	contamination linked to the diversity of biological communities in rivers? Trends
1423	Anal. Chem. 28, 592-602. doi:10.1016/j.trac.2009.02.007.

1424	Rimet, F., Bouchez, A., 2011. Use of diatom life-forms and ecological guilds to assess
1425	pesticide contamination in rivers: Lotic mesocosm approaches. Ecol. Indic. 11,
1426	489-499. http://dx.doi.org/10.1016/j.ecolind.2010.07.004.
1427	Rimet, F., Bouchez, A., 2012. Biomonitoring river diatoms: Implications of taxonomic
1428	resolution. Ecol. Indic. 15, 92-99.
1429	http://dx.doi.org/10.1016/j.ecolind.2011.09.014.
1430	Rose, D.T., Cox. E.J., 2013. Some diatom species do not show a gradual decrease in cell
1431	size as they reproduce. Fundam. Appl. Limnol. 182/2, 117-122.
1432	http://dx.doi.org/10.1127/1863-9135/2013/0406.
1433	Rosen, B.H., Lowe, R.L., 1984. Physiological and ultrastructural responses of Cyclotella
1434	meneghiniana (Bacillariophyta) to light intensity and nutrient stress. J. Phycol. 20,
1435	173-183. http://dx.doi.org/10.1111/j.0022-3646.1984.00173.x.
1436	Roubeix, V., Mazzella, N., Schouler, L., Fauvelle, V., Morin, S., Coste, M., Delmas, F.,
1437	Margoum, C., 2011a. Variations of periphytic diatom sensitivity to the herbicide
1438	diuron and relation to species distribution in a contamination gradient:
1439	implications for biomonitoring. J. Environ. Monitor. 13, 1768-1774.
1440	http://dx.doi.org/10.1039/c0em00783h.
1441	Roubeix, V., Mazzella, N., Méchin, B., Coste, M., Delmas, F., 2011b. Impact of the
1442	herbicide metolachlor on river periphytic diatoms: experimental comparison of
1443	descriptors at different biological organization levels. Ann. Limnol Int. J. Lim.
1444	47, 1-11. http://dx.doi.org/10.1051/limn/20110080.
1445	Roubeix, V., Fauvelle, V., Tison-Rosebery, J., Mazzella, N., Coste, M., Delmas, F., 2012.
1446	Assessing the impact of chloroacetanilide herbicides and their metabolites on
1447	periphyton in the Leyre River (SW France) via short term growth inhibition tests
1448	on autochthonous diatoms J. Environ. Monitor. 14, 1655-1663.
1449	http://dx.doi.org/10.1039/c2em10887a.
1450	Ruggiu, D., Luglié A., Cattaneo, A., Panzani, P., 1998. Paleoecological evidence for
1451	diatom response to metal pollution in Lake Orta (N. Italy). J. Paleolimnol. 20,
1452	333-345. http://dx.doi.org/10.1023/A:100/929926526.
1453	Rynearson, T.A., Armbrust, E.V., 2000. DNA fingerprinting reveals extensive genetic
1454	diversity in a field population of the centric diatom Ditylum brightwellii. Limnol.
1455	Oceanogr., 45, 1329-1340. http://dx.doi.org/10.4319/10.2000.45.6.1329.
1456	Sabater, S., 2000. Diatom communities as indicators of environmental stress in the
1457	Guadiamar River, S-W. Spain, following a major mine tailings spill. J. Appl.
1458	Phycol. 12, 113-124. http://dx.doi.org/10.1023/A:100819/411815.
1459	Sabater, S., Guasch, H., Romani, A., Isabel Munoz, I., 2002. The effect of biological
1400	Leadnet is locie and a 150 between the interpretent and the interpretent in the interp
1461	Hydrobiologia 469, 149-156. http://dx.doi.org/10.1023/A:1015549404082.
1402	Sabater, S., Admiraal, W., 2005. Periphyton as biological indicators in managed aquatic
1405	MCM (Eds.) Derinbuton Ecology Exploitation and Management CAPI
1404	M.C.M. (Eds.), Penphyton. Ecology Exploitation and Management. CADI Publishing Combridge pp. 150-177
1403	I uunsiinig, Camuluge, pp. 137-177. Sabatar S. Guasch H. Dicart M. Domaní A. Vidal G. Klündar C. Sahmitt Jansan
1400	M 2007 Monitoring the effect of chamicals on biological communities The
1/68	highling an interface Anal Riganal Chem 387 1425 1434
1400	$\frac{1}{1000}$ bitm as an interface. Anal. Divanal. Chemi. 307, 1423-1434.
1407	mp.//ax.a01.01g/10.1007/300210-000-1031-0.

1470 Schindler, D.W., 1990. Experimental perturbations of whole lakes as tests of 1471 hypotheses concerning ecosystem structure and function. Oikos, 57, 25-41. 1472 http://dx.doi.org/10.2307/3565733. 1473 Schmitt-Jansen, M., Altenburger, R., 2005. Toxic effects of isoproturon on periphyton 1474 communities - a microcosm study. Estuar. Coast. Shelf Sci. 62, 539-545. 1475 http://dx.doi.org/10.1016/j.ecss.2004.09.016. Sluys, R., 2013. The unappreciated, fundamentally analytical nature of taxonomy and the 1476 1477 implications for the inventory of biodiversity. Biodivers. Conserv. 22, 1095-1105. 1478 http://dx.doi.org/10.1007/s10531-013-0472-x. 1479 Smetacek, V., 2001. A watery arms race. Nature. 411, 745. 1480 http://dx.doi.org/10.1038/35081210. 1481 Smol, J.P., Glew, J.R., 1992. Paleolimnology. In: W.A. Nierenberg, (Ed.), Encylopedia of 1482 earth system science 3. Academic press, San Diego, pp. 551-564. 1483 Snoeijs, P., Busse, S., Potapova, M., 2002. The importance of diatom cell size in 1484 community analysis. J. Phycol. 38, 265-272. http://dx.doi.org/10.1046/j.1529-8817.2002.01105.x. 1485 1486 Stauber, J.L., Florence, T.M., 1987. Mechanism of toxicity of ionic copper and copper 1487 complexes to algae. Mar. Biol. 94, 511-519. 1488 http://dx.doi.org/doi:10.1007/BF00431397. 1489 Stenger-Kovács, C., Lengyel, E., Crossetti, L.O., Uveges, V., Padisak, J., 2013. Diatom 1490 ecological guilds as indicators of temporally changing stressors and disturbances in the small Torna-stream, Hungary. Ecol. Indic. 24, 138-147. 1491 1492 http://dx.doi.org/10.1016/j.ecolind.2012.06.003. 1493 Stevenson, R.J., 1984. Epilithic and epipelic diatoms in the Sandusky River, with 1494 emphasis on species diversity and water quality. Hydrobiologia 114, 161-175. 1495 Stevenson, R.J., Peterson, C.G., 1991. Emigration and immigration can be important 1496 determinants of benthic diatom assemblages in streams. Freshw. Biol. 26, 279-1497 294. http://dx.doi.org/10.1111/j.1365-2427.1991.tb01735.x. 1498 Stevenson, R.J., White, K.D., 1995. A comparison of natural and human determinants 1499 of phytoplankton communities in the Kentucky River basin, USA. Hydrobiologia 1500 297, 201-216. http://dx.doi.org/10.1007/BF00019285. 1501 Stevenson, R.J., Pan, Y., Vandam, H., 2010. Assessing environmental conditions in rivers 1502 and streams with diatoms. In: Smol J.P., and Stoermer E.F., (2nd Eds.), The 1503 diatoms: applications for the environmental and earth sciences. Cambridge university press, London, pp. 57-85. 1504 1505 https://doi.org/10.1017/CBO9780511763175.005. Stevenson, J., 2014. Ecological assessments with algae: a review and synthesis. J. 1506 1507 Phycol. 50, 437-461. http://dx.doi.org/10.1111/jpy.12189. 1508 Svensson, F., Norberg, J., Snoeijs, P., 2014. Diatom cell size, coloniality and motility: 1509 trade-offs between temperature, salinity and nutrient supply with climate change. 1510 PLoS ONE 9: e109993. doi:10.1371/journal.pone.0109993. Takabayashi, M., Lew, K., Johnson, A., Marchi, A.L., Dugdale, R., Wilkerson, F.P., 1511 1512 2006. The effect of the nutrient availability and temperature on chain length of 1513 the diatom, Skeletonema costatum. J. Plankton Res.28, 831-840. 1514 http://dx.doi.org/10.1093/plankt/fbl018.

1515	ter Braak, C.J.F., 1986. Canonical correspondence analysis: A new eigenvector
1516	technique for multivariate direct gradient analysis. Ecology 67, 1167-1179.
1517	http://dx.doi.org/10.2307/1938672.
1518	ter Braak, C.J.F., 1987. The analysis of vegetation-environment relationships by
1519	canonical correspondence analysis. Vegetatio 69, 69-77.
1520	http://dx.doi.org/10.1007/978-94-009-4061-1_7.
1521	ter Braak, C. J. F., Šmilauer, P., 2002. CANOCO Reference manual and CanDraw for
1522	Windows User's Guide. Software for Canonical Community Ordination (version
1523	4.5). Biometris, Wageningen and Ceské Budějovice.
1524	Trobajo, R., Mann, D.G., Chepurnov, V.A., Clavero, E., Cox, E.J., 2006. Taxonomy,
1525	life cycle, and auxosporulation of Nitzschia Fonticola (Bacillariophyta)1. J.
1526	Phycol. 42, 1353-1372. http://dx.doi.org/10.1111/j.1529-8817.2006.00291.x.
1527	Trobajo, R., Rovira, L., Mann, D.G., Cox, E.J., 2011. Effects of salinity on growth and on
1528	valve morphology of five estuarine diatoms. Phycol. Res. 59, 83-90.
1529	http://dx.doi.org/10.1111/j.1440-1835.2010.00603.x.
1530	Trobajo, R., Rovira, L., Euctor, L., Wetzel, C.E., Kelly, M., Mann, D.G., 2013.
1531	Morphology and identity of some ecologically important small Nitzschia species.
1532	Diatom Res. 28, 37-59. http://dx.doi.org/10.1080/0269249X.2012.734531.
1533	Van dam, H., Mertens, A., Sinkeldam, J., 1994. A coded checklist and ecological
1534	indicator values of freshwater diatoms from the Netherlands. Neth. J. Aquat. Ecol.
1535	28, 117-133. http://dx.doi.org/10.1007/BF02334251.
1536	Van de Vijver, B., Beyens, L., 1998. Diatoms and water quality in the Kleine Nete, a
1537	Belgian lowland stream. Limnologica 28,145-152.
1538	Van Tol, H.M., Amin, S.A., Armbrust, E.V., 2016. Ubiquitous marine bacterium inhibits
1539	diatom cell division. ISME J. http://dx.doi.org/10.1038/ismej.2016.112.
1540	Veldhuis, M., Kraay, G., Timmermans, K., 2001. Cell death in phytoplankton:
1541	correlation between changes in membrane permeability, photosynthetic
1542	activity, pigmentation and growth. Eur. J. Phycol. 36, 167-177.
1543	http://dx.doi.org/10.1080/09670260110001735318.
1544	Verb, R.G., Vis, M.L., 2005. Periphyton assemblages as bioindicators of mine-drainage
1545	inunglaciated Western Allegheny Plateau lotic systems. Water Air Soil Pollut.
1546	161, 227-265. http://dx.doi.org/10.1007/s11270-005-4285-8.
1547	Visco, J.A., Gentil, L.A.P., Cordonier, A., Esling, P., Pillet, L., Pawlowski, J., 2015.
1548	Environmental monitoring: inferring the diatom index from next-generation
1549	sequencing data. Environ. Sci. Technol. 49, 7597-7605.
1550	http://dx.doi.org/10.1021/es506158m.
1551	Walsby, A.E., Reynolds, C.S., 1980. Sinking and floating. In: Morris, I. (Ed.), The
1552	physiological ecology of phytoplankton. Blackwell Scientific Publications, New
1553	York, pp 371-412.
1554	Wang, J., Cao, S., Du, C., Chen, D., 2013. Underwater locomotion strategy by a benthic
1555	pinnate diatom Navicula sp. Protoplasma 250, 1203-1212. http://dx.doi.org/
1556	10.1007/s00709-013-0502-2.
1557	Wang, Z.T., Ullrich, N., Joo, S., Waffenschmidt, S., Goodenough, U., 2009. Algal lipid
1558	bodies: stress induction, purification and biochemical characterization in wild-
1559	type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 8, 1856-
1560	1868. http://dx.doi.org/10.1128/EC.00272-09.

1561	Wei, Y., Zhu, N., Lavoie, M., Wang, J., Qian H., Fu, Z., 2014. Copper toxicity to
1562	Phaeodactylum tricornutum: a survey of the sensitivity of various toxicity
1563	endpoints at the physiological, biochemical, molecular and structural levels.
1564	Biometals 27, 527-537. http://dx.doi.org/10.1007/s10534-014-9727-6.
1565	Weng, L.C., Pasaribu, B., Lin, I.P., Tsai, C.H., Chen, C.S., Jiang, P.L., 2014. Nitrogen
1566	deprivation induces lipid droplet accumulation and alters fatty acid metalbolism in
1567	symbiotic dinoflagellates isolated from <i>Aiptasia pulchella</i> . Sci. Rep. 4, 1-8.
1568	http://dx.doi.org/10.1038/srep05777.
1569	Wilhelm, S.W., Adrian, R., 2008. Impact of summer warming on the thermal
1570	characteristics of a polymictic lake and consequences for oxygen, nutrients and
1571	phytoplankton. Freshw. Biol. 53, 226-237. http://dx.doi.org/10.1111/j.1365-
1572	2427.2008.01980.x.
1573	Will, K.W., Rubinoff, D., 2004. Myth of the molecule: DNA barcodes for species cannot
1574	replace morphology for identification and classification. Cladistics 20, 47-55.
1575	http://dx.doi.org/10.1111/j.1096-0031.2003.00008.x.
1576	Winder, M., Reuter, J.E., Schladow, S.G., 2009. Lake warming favours small-sized
1577	planktonic diatom species. Proc. R. Soc. B. 276, 427-435.
1578	http://dx.doi.org/10.1098/rspb.2008.1200.
1579	Wood, R.J., Mitrovic, S.M., Kefford, B.J., 2014. Determining the relative sensitivity of
1580	benthic diatoms to atrazine using rapid toxicity testing: A novel method. Sci.
1581	Total Environ. 485-486, 421-427.
1582	http://dx.doi.org/10.1016/j.scitotenv.2014.03.115.
1583	Wood, R.J., Mitrovic, S.M., Lim, R.P., Kefford, B.J., 2016. How benthic diatoms within
1584	natural communities respond to eight common herbicides with different modes
1585	of action. Sci. Total Environ. 557-558, 636-643.
1586	http://dx.doi.org/10.1016/j.scitotenv.2016.03.142.
1587	
1588	

Legend for the figures

Fig. S1. Photographic documentation (SEM, scanning electron microscopy) of 12 sensitive and 13 tolerant diatom species reported from contaminated waterbodies of Korea. Superscripts "S" showed the sensitive diatom species while the others are tolerant. For SEM investigation, diatom samples were fixed in 2.5% glutaldehyde for 5 h and then washed with a 0.1 M phosphate buffer solution. The samples were then dehydrated through a series of 30%, 50%, 70%, 80%, 90%, 95% and 100% acetone. Cleaned material was mounted on a stub on which Hexamethyledisilazane was added, sputter-coated with Gold + Palladium and examined using a JEOL/JSM-7001F, Japan. (The results presented were obtained by the authors of the present ms).

Fig. 1. Alterations in cell integrity as nuclear anomalies. The effect of maleic hydrazide (MH) on the diatom genera (*Nitzschia* (a), *Gomphonema* (b) and *Navicula* (c)) with normal (N), abnormal nuclear location (ANL), fragmented nucleus (FN), micronucleus (MN) and broken nucleus membrane (BNM) (nucleus stained in blue with Hoescht 33342, chloroplasts appear in red). Scale bar- 10 μm. Source- Debenest et al., (2008). The effect of hexavalent chromium on the cells of *Fallacia pymaea* (d) and *Navicula novaesiberica* (e) with normal (N), abnormal nuclear location (ANL), fragmented nucleus (FN), micronucleus (MN) and broken nucleus membrane (BNM) (nucleus stained in blue with Hoescht 33342, chloroplasts appear in red). Scale bar-10 μm. Source-Licursi and Gómez, (2013).

Fig. 2. Alteration in the cell membrane and cytoplamic content. (a) Percent decrease in the photosynthetic apparatus (PDPA) of live *Navicula*, (b) Percent decrease in the photosynthetic apparatus (PDPA) of live *Amphora* under Cu stress under laboratory conditions. Scale bar- 8µm. (The results presented were obtained by the authors of the present ms).

Fig. 3. Lipid bodies visualization in the periphytic community dominated with diatoms and stained with BODIPY fluorescent dye. Green fluorescence is BODIPY staining of neutral lipids, red is chlorophyll fluorescence. Scale bar- 10 μ m. (The results presented were obtained by the authors of the present ms).

Fig. 4. Light micrographs of lipid bodies in 29 diatom species. (1) *Navicula veneta*, (2) *N. gregaria*, (3) N. *decussis*, (4) *N. schoenfeldii* (5) *N. capitatoradiata*, (6) *N. cincta*, (7) *N. accomoda*, (7) *N. gregaria*, (8) *N. phyllepta*, (9) *Craticula cuspidata*, (10) *Gyrosigma exilis*, (11) *G. nodiferum*, (12) *Navicula incertata*, (13) *Achnanthidium exiguum*, (14) *Pinnularia subcapitata*, (15) *Tryblionella debilis*, (16) *Cocconeis placentula*, (17) *Nitzschia palea*, (18) *N. linearis*, (19) *N. amphibia*, (20) *N. sigmoidea*, (21) *N. sigmoidea*, (21) *Bacillaria paradoxa*, (22) *Nitzschia intermedia*, (23) *N. frustulum*, (24) *N. filiformis*, (25) *N. inconspicua*, (26) *Tryblionella apiculata*, (27) *Plagiotropis lepidotropis*, (28) *Haslea ostrearia*, (28) *Bacillaria paradoxa* and (29) *Gyrosigma spencerii*. Scale bar-5µm. (The results presented were obtained by the authors of the present ms).

Fig. 5. Photographic documentation of alteration in frustule size in 14 commonly occurring diatom species under different environmental and anthropogenic disturbances.(1) *Navicula salinarium*, (2) *Navicula recens*, (3) *Diploneis interrupta*, (4) *Surirella stalagama*, (5) *Tryblionella coarctata*, (6) *Diploneis elliptica*, (7) *Surirella robusta*, (8) *Surirella gemma*, (9) *Meloneis mimallis* var. *mimallis*, (10) *Encyonema* sp., (11) *Amphora* sp., (12) *Cocconeis placentula*, (13) *Meloneis akytos* and (14) *M. mimallis* var. *zephyria*. Scale bar- 5µm. (The results presented were obtained by the authors of the present ms).

Fig. 6. Morphological deformities observed in living diatom frustules examined under different types of environmental and anthropogenic perturbations. (1) *Navicula veneta*, (2) *Nitzschia linearis*, (3) *Nitzschia amphibia*, (4) *Fragilaria capucina*, (5) *Diatoma vulgare*, (6) *Diatoma vulgare*, (7) *Nitzschia filiformis*, (8) *Gomphonema pseudoaugur*, (9) *Fragilaria capucina* and (10) *Ulnaria ulna*. First frustules in each species is normal while rest ones are deformed. Scale bar- 8µm. Source- Pandey et al., 2015; Pandey and Bergey, 2016; Gautam et al., 2017.

Fig. 7. Normal (first frustules) and Deformed frustules in 29 diatom species examined under different types of environmental and anthropogenic purturbations. (1) *Achnanthidium breviceps*, (2) *Mastogloia smithii*, (3) *Luticola muticopsis*, (4) *Nitzschia compressa*, (5) *Planothidium frequentissimum*, (6) *Diatoma vulgare*, (7) *Diatoma vulgare*, (8) *Diatoma sp.*, (9) *Tryblionella apiculata*, (10) *Cymbella tumida*, (11) *Cocconeis placentula*, (12) *Eolimna subminuscula*, (13) *Achnanthidium exiguum*, (14) *Fragilaria sp.*, (15) *Tabularia fasciculata*, (16) *Fragilaria capucina*, (17) *Nitzschia clausii*, (18) *Ulnaria ulna*, (19) *Fragilariforma bicapitata*, (20) *Brachysira microcephala*, (21) *Caloneis bacillum*, (22) *Caloneis bacillum* (Girdle view), (23) *Nitzschia palea*, (24) *Ulnaria ulna*, (25) *Cymbella turgida*, (26) *Gomphonema pseudoaugur*, (27) *Ulnaria ulna*, (28) *Brachysira brebissonii* and (29) *Gomphonema parvulum*. First frustules in each species is normal while rest ones are defromed. Scale bar- 7µm. (The results presented were obtained by the authors of the present ms).

Diatom species	*Biovolume (µm ³ Cell ⁻¹) of lipid bodies (number of lipid bodies)			% contribution of lipid bodies to total cell volume under metal stress		
	Contro l	Cu	Zn	Control	Cu	Zn
Achnanthidium exiguum	2* (1)	6* (2)-23(2)	4* (1)-16(2)	7	20-77	13-53
Navicula gregaria	4 (2)	20(4)-90(4)	13(3)-68(4)	2	9-41	6-31
Navicula recens	3 (2)	12(2)-67(2)	12(2)-61(2)	1.5	6-34	6-31
Nitzschia amphibia	4 (2)	52(6)-165(6)	45(4)-145(4)	1.2	16-50	14-44
Nitzschia linearis	4 (0)	16(6)-126(5)	16(5)-126(5)	1.3	5-40	5-40

Table 1. Biovolume and number of lipid bodies in five diatom species exposed to metals (Cu and Zn; $100 \ \mu g \ l^{-1}$) under laboratory conditions. See Fig. 7 (14, 1, 6, 20 and 19). Source: Pandey et al., 2015.

Table 2. Number of lipid bodies and % biovolume contribution of lipid bodies per cell in three common diatom species examined at the metalliferous sites (Khetri and Zawar) of Rajasthan, India. See Fig. 7 (15, 19, 21 and 22). Source: Pandey and Bergey, 2016.

Diatom species	No. of lipid bodies (diameter in μm)		% contribution of lipid bodies to total cell volume under metal stress		
	Control	Metal stress (Cu, Zn)	Control	Metal stress (Cu, Zn)	
Pinnularia subcapitata	2 (0.1-0.5)	4 (1-3)	2-5	15-60	
Nitzschia linearis	4 (0.1-0.32)	4 (1-2.8)	4-8	14-43	
Nitzschia sigmoidea	5 (0.1-0.2)	10 (1-2)	2-5	12-25	

Table 3- Investigation of % change in cell length in 14 different diatom species under environmental and anthropogenic disturbances. The diatom samples were collected from various contaminated (nutrient and heavy metals) waterbodies of Korea during 2014-2016. Percent change in length is percent loss of length relative to the longest cell measured.

	Diatom species	No. of frustules	% change	
	_	examined	in length	
1.	Cocconeis placentula	50	0-25	
2.	Diploneis elliptica	50	0-85	
3.	Diploneis interrupta	50	5-58	
4.	Encyonema minutum	50	0-55	
5.	Meloneis akytos	50	5-80	
6.	Meloneis gorgis	50	0-90	
7.	Meloneis mimallis var. mimallis	50	10-80	
8.	Meloneis mimallis var. zephyria	50	0-10	
9.	Navicula recens	50	15-55	
10.	Navicula salinarium	50	10-60	
11.	Surirella gemma	50	5-65	
12.	Surirella robusta	50	0-40	
13.	Surirella stalagma	50	5-65	
14.	Tryblionella coarctata	50	0-60	

Table 4- Relative proportions (%) of various deformities examined under in situ (45-165 μ g cm⁻² d⁻¹ for Cu; 42-150 μ g cm⁻² d⁻¹ for Zn in 14 days) and laboratory (100 μ g l⁻¹ after 7 days) condition under Cu and Zn stress (separately) in the periphytic diatoms (Pandey et al., 2014, 2015; Pandey and Bergey, 2016).

	In situ		Lab	
	Control	Stressed	Control	Stressed
Total deformity (%)	0.1	3.0	2	10
Type 1 (Valve)	70	76	80	40
Type 2 (Striation)	30	5	20	20
Type 3 (Raphe)	0	17	0	20
Type 4 (Mixed)	0	2	0	20

Figure 1. Alterations in cell integrity as nuclear anomalies. The effect of maleic hydrazide (MH) on the diatom genera (*Nitzschia* (a), *Gomphonema* (b) and *Navicula* (c)) with normal (N), abnormal nuclear location (ANL), fragmented nucleus (FN), micronucleus (MN) and broken nucleus membrane (BNM) (nucleus stained in blue with Hoescht 33342, chloroplasts appear in red). Scale bar- 10 µm. Source-Debenest et al., (2008). The effect of hexavalent chromium on the cells of *Fallacia pymaea* (d) and *Navicula novaesiberica* (e) with normal (N), abnormal nuclear location (ANL), fragmented nucleus (FN), micronucleus (MN) and broken nucleus membrane (BNM) (nucleus stained in blue with Hoescht 33342, chloroplasts appear in red). Scale bar- 10 µm. Source-Stained in blue with Hoescht 33342, chloroplasts appear in red). Scale bar- 10 µm. Source-Debenest et al., (2008).

Fig. 2. Alteration in the cell membrane and cytoplasmic content. (a) Percent decrease in the photosynthetic apparatus (PDPA) of live *Navicula*, (b) Percent decrease in the photosynthetic apparatus (PDPA) of live *Amphora* under Cu stress under laboratory conditions. Scale bar- 8µm. (The results presented were obtained by the authors of the present ms).

Figure 3. Lipid bodies visualization in the periphytic community dominated with diatoms and stained with BODIPY fluorescent dye. Green fluorescence is BODIPY staining of neutral lipids, red is chlorophyll autofluorescence . Scale bar- 10 μ m. (The results presented were obtained by the authors of the present ms).

Figure 4. Light micrographs of lipid bodies in 29 diatom species. (1) *Navicula veneta*, (2) *N. gregaria*, (3) N. decussis, (4) N. schoenfeldii (5) N. capitatoradiata, (6) N. cincta, (7) N. accomoda, (7) N. gregaria, (8) N. phyllepta, (9) Craticula cuspidata, (10) Gyrosigma exilis, (11) G. nodiferum, (12) Navicula incertata, (13) Achnanthidium exiguum, (14) Pinnularia subcapitata, (15) Tryblionella debilis, (16) Cocconeis placentula, (17) Nitzschia palea, (18) N. linearis, (19) N. amphibia, (20) N. sigmoidea, (21) N. sigmoidea, (21) Bacillaria paradoxa, (22) Nitzschia intermedia, (23) N. frustulum, (24) N. filiformis, (25) N. inconspicua, (26) *Tryblionella apiculata*, (27) Plagiotropis lepidotropis, (28) Haslea ostrearia, (28) Bacillaria paradoxa and (29) Gyrosigma spencerii. Scale bar-5µm. (The results presented were obtained by the authors of the present ms).

Figure 5. Photographic documentation of alteration in frustule size in 14 commonly occurring diatom species under different environmental and anthropogenic disturbances.(1) *Navicula salinarium*, (2) *Navicula recens*, (3) *Diploneis interrupta*, (4) *Surirella stalagama*, (5) Tryblionella coarctata, (6) Diploneis elliptica, (7) Surirella robusta, (8) *Surirella gemma*, (9) Meloneis mimallis var. mimallis, (10) Encyonema sp., (11) Amphora sp., (12) Cocconeis placentula, (13) Meloneis akytos and (14) M. mimallis var. zephyria. Scale bar-5µm. (The results presented were obtained by the authors of the present ms).

Figure 6. Morphological deformities observed in living diatom frustules examined under different types of environmental and anthropogenic perturbations. (1) *Navicula veneta*, (2) *Nitzschia linearis*, (3) *Nitzschia amphibia*, (4) *Fragilaria capucina*, (5) *Diatoma vulgare*, (6) *Diatoma vulgare*, (7) *Nitzschia filiformis*, (8) *Gomphonema pseudoaugur*, (9) *Fragilaria capucina* and (10) *Ulnaria ulna*. First frustules in each species is normal while rest ones are deformed. Scale bar- 8µm. Source- Pandey et al., 2015; Pandey and Bergey, 2016; Gautam et al., 2017.

Figure 7. Normal (first frustules) and Deformed frustules in 29 diatom species examined under different types of environmental and anthropogenic purturbations. (1) Achnanthidium breviceps, (2) Mastogloia smithii, (3) Luticola muticopsis, (4) Nitzschia compressa, (5) Planothidium frequentissimum, (6) Diatoma vulgare, (7) Diatoma vulgare, (8) Diatoma sp., (9) Tryblionella apiculata, (10) Cymbella tumida, (11) Cocconeis placentula, (12) Eolimna subminuscula, (13) Achnanthidium exiguum, (14) Fragilaria sp., (15) Tabularia fasciculata, (16) Fragilaria capucina, (17) Nitzschia clausii, Ulnaria ulna. (19)(18)Fragilariforma bicapitata, (20) Brachysira microcephala, (21)Caloneis bacillum, (22)Caloneis bacillum (Girdle view), (23) Nitzschia palea, (24) Ulnaria ulna, (25) Cymbella turgida, (26) Gomphonema pseudoaugur, (27) Ulnaria ulna, (28) Brachysira brebissonii and (29) Gomphonema parvulum. First frustules in each species is normal while rest ones are defromed. Scale bar- 7µm. (The results presented were obtained by the authors of the present ms).

Highlights

- 1. Diatom-based taxonomical parameters were investigated under various stresses.
- 2. Status of new diatom endpoints was examined under various stresses.
- 3. New diatom endpoints are easy, quick, cheap and need less human expertise.
- 4. Traditional and new endpoints required for effective biomonitoring practices.